111k views
5 votes
If M is the midpoint of XY, find the coordinates of Y if X(-1,-3) and M(0.5,-1.6)

User Nina
by
8.8k points

1 Answer

3 votes

Answer:

The coordinates of Y are (2,-0.2)

Explanation:

Let the coordinates of Y be (x,y)

Since M is the midpoint of XY, so


M_(x) =(X_(x)+Y_(x))/(2)


0.5 =(-1+Y_(x))/(2)

Multiply both sides by 2


0.5*2 =(-1+Y_(x))/(2)*2

Cancel out the 2's from the top and bottom on the right side


1 =-1+Y_(x)

Add 1 to both sides


1+1 =-1+Y_(x)+1

Cancel out -1 and +1 on the right side


2 =Y_(x)

Flip the sides


Y_(x)=2


Similarly,


M_(y) =(X_(y)+Y_(y))/(2)


-1.6 =(-3+Y_(y))/(2)

Multiply both sides by 2


-1.6*2 =(-3+Y_(y))/(2)*2

Cancel out the 2's on the top and bottom of the right side


-3.2 =-3+Y_(y)

Add 3 to both sides


-3.2+3 =-3+Y_(y)+3

Cancel out -3 and +3 on the right side


-0.2 =Y_(y)

Flip the sides


Y_(y)=-0.2


So, the coordinates of Y are (2,-0.2)

User GaloisGirl
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories