Answer:
Explanation:
The point of intersection of
![x+2y=9...eqn1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kfy0s1vdudtcp5adf8c4yndb2fz29xwlix.png)
and
is the solution of the two equations.
We add equation (1) and equation(2) to get,
![x+4x+2y-2y=9+-4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rca5zd9ph20n7clg19nlp0nf43ty2jf2cm.png)
![\Rightarrow 5x=5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8h0w53amd0bq8kcytfn6p2mjy2zavb9tis.png)
![\Rightarrow x=1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qi0q1x21busef0yn3elcoor7gsstfaltfo.png)
We put
into equation (1) to get,
![1+2y=9](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2kllb4iy5a050esq13hekjgttynzezg65e.png)
![\Rightarrow 2y=9-1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/sqr4vhkqplv5nfvzfb7lxe7i5dlg9um18p.png)
![\Rightarrow 2y=8](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vmnca7pwn5hxgw52cy6d32eyu8ejpqh863.png)
![\Rightarrow y=4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rtsboeh5poup3jqgc7mji635bkykgy1902.png)
Therefore the line passes through the point,
.
The line also passes through the point of intersection of
![3x-4y=14...eqn(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/maqc040ztqdecwg0nmvja0ls26w2prw3z2.png)
and
![3x+7y=-8...eqn(4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pgoy5iogeick50907bdwode609canvxq2a.png)
We subtract equation (3) from equation (4) to obtain,
![3x-3x+7y--4y=-8-14](https://img.qammunity.org/2020/formulas/mathematics/middle-school/njj4vy96piaqobtrcv0hzgzbliw1eeezxk.png)
![\Rightarrow 11y=-22](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9tz0y7f27girnatskapux47d513i7mk6eh.png)
![\Rightarrow y=-2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pgqrg8x9y314xl1ol61orjkm73067jbh1m.png)
We substitute this value into equation (4) to get,
![3x+7(-2)=-8](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tinrg5y0ub9ih5z8bmxgamuk6etbrw2tjf.png)
![3x-14=-8](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ucj04wp1qx4qduywab91q5w3zctf560xw0.png)
![3x=-8+14](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pyr1o4xlb0fy3tc46wb87skpudsriqhmfm.png)
![3x=6](https://img.qammunity.org/2020/formulas/mathematics/middle-school/y6hdpiz64ez4kkmiqy932rlpust1ccwugf.png)
![x=2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rgwu4x0cp6hdykhfamznd7kqdkp0xgsg9s.png)
The line also passes through
![(2,-2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zchqqvlj60mp48bqdtpr2o0pd10wr7arnk.png)
The slope of the line is
![slope=(4--2)/(1-2) =(6)/(-1)=-6](https://img.qammunity.org/2020/formulas/mathematics/middle-school/khkr949tghufqlbw7lpwwcqlrlkerp5llk.png)
The equation of the line is
![y+2=-6(x-2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mnitwnff1qky9sj6r9m3om0jn969kt1nti.png)
![y+2=-6x+12](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2cec9h0ryqt94l1vdyou710amipqky0anr.png)
is the required equation