Answer:
The vertex of the provided equation (1,-25)
The x intercepts are (-4,0) and (6,0).
Explanation:
Consider the provided equation.
![y=x^2-2x-24](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cz6ruuthmlzwf0kuhny0e153hu7a494eyy.png)
Substitute y=0 to find x intercepts.
![x^2-2x-24=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/z40sfp14tv6j2d45rdwq3zk89g6i53w58m.png)
The above equation can be written as:
![x^2+4x-6x-24=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xj9321bq4el9wxwpnj9jnno9yrdzo9cqp7.png)
![x(x+4)-6(x+4)=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nej4y8jx9wmm35wakxjhtk4f4sl8rbupoq.png)
![(x+4)(x-6)=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qndyyizpnwm1jnilbl7gbehxr2ft03nf6r.png)
By zero product rule:If ab=0 then either a=0 or b=0
or
![x-6=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nifwrr7gci3uqnlp3pzwi54lhachdn705r.png)
or
![x=6](https://img.qammunity.org/2020/formulas/mathematics/middle-school/iytjkob8c453cdntkigo6vyjyk3yzlat9o.png)
Hence, the x intercepts are (-4,0) and (6,0).
If the equation is in the standard form
then the expression
gives the x coordinate of the vertex.
By comparing the provided equation with standard form we can concluded that: a=1, b=-2 and c=-24
Substitute the respective values in the expression
we get x coordinates of the vertex:
![(-(-2))/(2(1))=(2)/(2)=1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4aoeg6ve8ky9fiunhzrceygf5zi5xp930m.png)
Hence, the value of x=1.
Now substitute the value of x in the provided equation to find the value of y.
![y=(1)^2-2(1)-24](https://img.qammunity.org/2020/formulas/mathematics/middle-school/p1gdfb7ma1ksw5majdzf6pdx9aa8lhgsco.png)
![y=1-2-24](https://img.qammunity.org/2020/formulas/mathematics/middle-school/s2970il4uwsu9buh6do7rh9bpvzngqai2c.png)
![y=-25](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zwpvnjjjt4i5sl0yibn4cv26a5a5hotue4.png)
Hence, the vertex of the provided equation (1,-25)