Answer:
a) The vertices of the feasible region are (0,100) (0,700) (400,500)
The minimum profit is at (0,100) and the maximum profit is at (400,500)
Explanation:
P=14x+22y-900 where p is profit
y > x +100 y must exceed the production of x by at least 100 units
x+2y<1400
x>0
y>0
We cannot produce negative quantities
Substitute y = x+100 into x+2y <1400
x+2(x+100) < 1400
x+2x+200 <1400
3x+200<1400
Subtract 200 from each side
3x<1200
Divide by 3
x<400
y = x+100
y = 400+100
y = 500
(400,500)
y > x +100
when x=0 y > 100
x+2y <1400
0+2y <1400
2y <1400
y <700
When x=0 y = 700
a) The vertices of the feasible region are (0,100) (0,700) (400,500)
b) Maximum and minimum profit occur at the vertices.
P=14x+22y-900
P(0,100) = 14(0) +22(100)-900 =2200-900=1300
P(0,700) = 14(0) +22(700)-900 =15400-900=14500
P(400,500) = 14(400) +22(500)-900 =5600+11000-900=15700
The minimum profit is at (0,100) and the maximum profit is at (400,500)