76.6k views
14 votes
Select the correct answer. If f(x)=2x^2-x-6 and g(x)=x^2-4, find f(x) ÷ g(x)

A, 2x + 3/x - 2
B. 2x - 3/x+ 2
C. 2x +3/x+2
D. 2x- 3/x-2​

User Litaoshen
by
7.9k points

2 Answers

11 votes

Answer:


f(x) = {2x}^(2) - 4x - 6 \\ {2x}^(2) - 4x + 3x - 6 \\ = 2x(x - 2) + 3(x - 2) \\ g(x) = {x}^(2) - 4 \\ (x + 2)(x - 2) \\ (f(x))/(g(x)) = ((2x + 3)(x - 2))/((x + 2)(x - 2)) = (2x + 3)/(x + 2)

User Giriraj
by
8.1k points
13 votes


\underline{\underline{\boxed{ \pink\star \: C.) \: \sf{(2x +3)/(x + 2)}}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Here,


\sf{f(x) = 2x^2 - x - 6}


\: \: \: \: \: \: \: \: \: \: \:


\longrightarrow\sf{2x^2 - 4x + 3x - 6}


\: \: \: \: \: \: \: \: \: \: \:


\longrightarrow\sf{2x(x-2)+3(x-2)}


\: \: \: \: \: \: \: \: \: \: \:


\longrightarrow\sf{(2x+3)(x-2)}

---------------------------------------------------


\sf{g(x) = x^2 - 4}


\: \: \: \: \: \: \: \: \: \: \:


\longrightarrow\sf{x^2 - 2^2}


\: \: \: \: \: \: \: \: \: \: \:


\longrightarrow\sf{(x+2)(x-2)}

Therefore,


\huge\sf{ (f(x))/(g(x)) = ((2x+3)(x-2))/((x+2)(x-2))}


\: \: \: \: \: \: \: \: \: \: \:


\longrightarrow \huge\sf{ (2x + 3)/(x + 2)}


\boxed{\underline{\color{hotpink}{ \red \star \: ᖇEᒪᗩ᙭GᖇOᗯ \: \: }}}

User Alan Mulligan
by
7.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories