Answer:
![(4√(3)+6)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bikp9nfw0yc586bfjzzkhxa45qo0dq6mdr.png)
Explanation:
Simplify the radical part on by one
![(8√(6mn)+6√(8mn))/(2√(2mn))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/agl5c3rrt45r7c3tq0y5qfj76yixr3spop.png)
square root (6) = sqrt(3) * sqrt(2)
square root (8) =sqrt(4)* sqrt(2)= 2sqrt(2)
so given expression becomes
![(8√(3)√(2)√(mn)+6*2√(2)√(mn))/(2√(2mn))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6y6tmwbg6oh8e7war74on8hhwta1zdn0vd.png)
![(8√(3)√(2mn)+6*2√(2mn))/(2√(2mn))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1bc3d4ktpklfyixjjtbmkhmaxp2urhajky.png)
![(8√(3)√(2mn)+12√(2mn))/(2√(2mn))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/onnwth8vfz492jl5rwfmvlt7ygb9khtbsm.png)
LEts factor out 2 sqrt(2mn) from the top
![(2√(2mn)(4√(3)+6))/(2√(2mn))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3tace0ki8cafb4j3ckwc29klbtd5ae5orr.png)
We cancel out 2sqrt(2mn) at the top and bottom
![(4√(3)+6)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bikp9nfw0yc586bfjzzkhxa45qo0dq6mdr.png)