197,187 views
13 votes
13 votes
Solve using substitution method:
X= y/3 +2
7x − 5y = 10

Solve for (x,y)

User Lucas Polonio
by
3.0k points

1 Answer

12 votes
12 votes


\quad \huge \quad \quad \boxed{ \tt \:Answer }


\qquad \tt \rightarrow \:x = 5/2


\qquad \tt \rightarrow \: y = 3/2

____________________________________


\large \tt Solution \: :


\qquad \tt \rightarrow \: x = \cfrac{y}{3} + 2 \: \: \: \: \: \: \: \: - (1)


\qquad \tt \rightarrow \: 7x -5 y = 10 \: \: - (2)


\textsf{put value of x in equation 2}


\qquad \tt \rightarrow \: 7 \bigg( \cfrac{y}{3} + 2 \bigg) - 5y = 10


\qquad \tt \rightarrow \: \cfrac{7y}{3} + 14 - 5y = 10


\qquad \tt \rightarrow \: \cfrac{7y}{3} - 5y = 10 - 14


\qquad \tt \rightarrow \: \cfrac{7y - 15y}{3} = - 4


\qquad \tt \rightarrow \: - 8y = - 4(3)


\qquad \tt \rightarrow \: y = \cfrac{ - 12}{ - 8}


\qquad \tt \rightarrow \: y = \cfrac{ 3}{ 2}


\textsf{put value of y in equation 1 }


\qquad \tt \rightarrow \: x = \cfrac{y}{3} + 2


\qquad \tt \rightarrow \: x = \bigg (\cfrac{3}{2} \sdot\cfrac{1}{3} \bigg) + 2


\qquad \tt \rightarrow \: x = \cfrac{1}{2} + 2


\qquad \tt \rightarrow \: x = \cfrac{1 + 4}{2}


\qquad \tt \rightarrow \: x = \cfrac{5}{2}

User HiTech
by
3.6k points