72.4k views
0 votes
Prove that sin²α + cos²α = 1 and
(1)/(cos^(2)\alpha ) = 1 + tan²α

Prove that sin²α + cos²α = 1 and (1)/(cos^(2)\alpha ) = 1 + tan²α-example-1
User Mosaad
by
5.3k points

1 Answer

3 votes

Answer:

See Explanation

Explanation:


{ \sin}^(2) \alpha + { \cos}^(2) \alpha = 1 \\ \\ LHS = { \sin}^(2) \alpha + { \cos}^(2) \alpha \\ \\ = \cancel {\sin}^(2) \alpha + { 1 -\cancel{ \sin}}^(2) \alpha \\ \\ = 1 \\ \\ = RHS \\ \\ \\ \frac{1}{ { \cos}^(2) \alpha } = 1 + { \tan}^(2) \alpha \\ \\ LHS = \frac{1}{ { \cos}^(2) \alpha } \\ \\ = { \sec}^(2) \alpha \\ \\ = 1 + { \tan}^(2) \alpha \\ \\ = RHS

User MisterSeajay
by
4.3k points