Answer:
Angular displacement=68.25 rad
Step-by-step explanation:
Circular Motion
If the angular speed varies from ωo to ωf in a time t, then the angular acceleration is given by:
![\displaystyle \alpha=(\omega_f-\omega_o)/(t)](https://img.qammunity.org/2021/formulas/physics/college/mvl5svcqkem3bx00i7rdzjerxmchy6crhw.png)
The angular displacement is given by:
![\displaystyle \theta=\omega_o.t+(\alpha.t^2)/(2)](https://img.qammunity.org/2021/formulas/physics/college/kj4d4s69c2hw60poysxi6j2349umthqfkz.png)
The wheel decelerates from ωo=13.5 rad/s to ωf=6 rad/s in t=7 s, thus:
![\displaystyle \alpha=(6-13.5)/(7)](https://img.qammunity.org/2021/formulas/physics/college/uyu4gljulk4pm69wpbd73ph7nevtpifdtg.png)
![\displaystyle \alpha=(-7.5)/(7)](https://img.qammunity.org/2021/formulas/physics/college/77cd57gtolkplkx8njj0eprgyu3vt2310q.png)
![\displaystyle \alpha=-1.071 \ rad/s^2](https://img.qammunity.org/2021/formulas/physics/college/lkhonbol92x3kq9m3i78ennb7pbrx6um30.png)
Thus, the angular displacement is:
![\displaystyle \theta=13.5*7+(-1.071*7^2)/(2)](https://img.qammunity.org/2021/formulas/physics/college/dwhkz4zh18tszq9chziomqruerynfymlwf.png)
![\displaystyle \theta=94.5-26.25](https://img.qammunity.org/2021/formulas/physics/college/k9jyoauowyiedsy7w78qyangcf8ebm9yvx.png)
![\boxed{\displaystyle \theta=68.25\ rad}](https://img.qammunity.org/2021/formulas/physics/college/lhszcfpou46ycu4f1lg7kim3c8xqi6b4l4.png)
Angular displacement=68.25 rad