Answer:
![\displaystyle \int {(12 - lnx)} \, dx = x[13 - ln(x)] + C](https://img.qammunity.org/2021/formulas/mathematics/college/ip1r0x2oaqb0putk8lv2awgmuaoqmzrtd2.png)
General Formulas and Concepts:
Algebra I
- Terms/Coefficients
- Factoring
Calculus
Differentiation
- Derivatives
- Derivative Notation
Integration
- Integrals
- Indefinite Integrals
- Integration Constant C
Integration Rule [Reverse Power Rule]:
![\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C](https://img.qammunity.org/2021/formulas/mathematics/college/finpzh9immxz5i8n5r71nxs30z9vx92wau.png)
Integration Property [Multiplied Constant]:
![\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/kyhrzhajthfkoabkn5u9i412baa68ie7zm.png)
Integration Property [Addition/Subtraction]:
![\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/ytcjdhza3nvop8ti8icbfc977nz2k5ug6b.png)
U-Substitution
Integration by Parts:
![\displaystyle \int {u} \, dv = uv - \int {v} \, du](https://img.qammunity.org/2021/formulas/mathematics/college/babomk9eltny0rfoifpt2pbc8iqonzv2j3.png)
- [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig
Explanation:
Step 1: Define
Identify
![\displaystyle \int {(12 - lnx)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/rf3iox08nyyxyutotaza8dbv5ngn5c3t3y.png)
Step 2: Integrate Pt. 1
- [Integral] Rewrite [Integration Property - Addition/Subtraction]:
![\displaystyle \int {(12 - lnx)} \, dx = \int {12} \, dx - \int {lnx} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/i7imzo55102flj014e5fu7vxicc3ktzky6.png)
- [1st Integral] Rewrite [Integration Property - Multiplied Constant]:
![\displaystyle \int {(12 - lnx)} \, dx = 12\int {} \, dx - \int {lnx} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/zt17tt3c2ptairacal9neegi3tt9d4erxn.png)
- [1st Integral] Reverse Power Rule:
![\displaystyle \int {(12 - lnx)} \, dx = 12x - \int {lnx} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/3poa6t171l211uel6j1rkwxfvrp8bodz7b.png)
Step 3: Integrate Pt. 2
Identify variables for integration by parts using LIPET.
- Set u:
![\displaystyle u = lnx](https://img.qammunity.org/2021/formulas/mathematics/college/r503thaou79yfvb72443gxin1jltp9c39d.png)
- [u] Differentiate [Logarithmic Differentiation]:
![\displaystyle du = (1)/(x) \ dx](https://img.qammunity.org/2021/formulas/mathematics/college/zqs4alp4qdaag2hltjiete4xdrktfj96g8.png)
- Set dv:
![\displaystyle dv = dx](https://img.qammunity.org/2021/formulas/mathematics/college/homuw86y6fpisf8zdiqhzok7r984o1jcvq.png)
- [dv] Integration Rule [Reverse Power Rule]:
![\displaystyle v = x](https://img.qammunity.org/2021/formulas/mathematics/college/nznraxvw8vfv3j1tnra726wfu4eml8ggen.png)
Step 4: Integrate Pt. 3
- [Integral] Integration by Parts:
![\displaystyle \int {(12 - lnx)} \, dx = 12x - \bigg[ xlnx - \int { \bigg( x \cdot (1)/(x) \bigg) } \, dx \bigg]](https://img.qammunity.org/2021/formulas/mathematics/college/5kf60djcr93muyvdeeey6v3wzb0ayqg2nq.png)
- [Integrand] Simplify:
![\displaystyle \int {(12 - lnx)} \, dx = 12x - \bigg[ xlnx - \int {} \, dx \bigg]](https://img.qammunity.org/2021/formulas/mathematics/college/uyfzyjo6dbkcljm4z3uxzkwh2d1vbimzw3.png)
- [Integral] Reverse Power Rule:
![\displaystyle \int {(12 - lnx)} \, dx = 12x - \bigg[ xlnx - x + C \bigg]](https://img.qammunity.org/2021/formulas/mathematics/college/elljnohzifaa9cvfu332lclf3e7s4zldh2.png)
- Simplify:
![\displaystyle \int {(12 - lnx)} \, dx = 12x - xlnx + x + C](https://img.qammunity.org/2021/formulas/mathematics/college/ormlaky6ohd17su9xeqnjzl5t0p0j3cunl.png)
- Factor:
![\displaystyle \int {(12 - lnx)} \, dx = x[12 - ln(x) + 1] + C](https://img.qammunity.org/2021/formulas/mathematics/college/i5np3m4gosf7xzav3kfcxypqn0qjw63ieu.png)
- Simplify:
![\displaystyle \int {(12 - lnx)} \, dx = x[13 - ln(x)] + C](https://img.qammunity.org/2021/formulas/mathematics/college/ip1r0x2oaqb0putk8lv2awgmuaoqmzrtd2.png)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Book: College Calculus 10e