5.1k views
2 votes
3.3^(2x+1)-103^x+1=0 need value of x

User Korvinko
by
7.9k points

1 Answer

1 vote

Answer:

The value of
x is approximately -1.531.

Explanation:

Let
3.3^(2\cdot x + 1)-103^(x+1) = 0, we proceed to solve this expression by algebraic means:

1)
3.3^(2\cdot x + 1)-103^(x+1) = 0 Given

2)
3.3^(2\cdot x)\cdot 3.3 -103^(x)\cdot 103 = 0
a^(b)\cdot a^(c) = a^(b+c)

3)
(3.3^(x))^(2)\cdot 3.3 -\left[\left( √(103) \right)^(2)\right]^(x)\cdot 103 = 0
(a^(b))^(c) = a^(b\cdot c)

4)
(3.3^(x))^(2)\cdot 3.3 - \left[\left(√(103)\right)^(x)\right]^(2)\cdot 103 = 0
(a^(b))^(c) = a^(b\cdot c)/Commutative property

5)
\left[\left((3.3)/(√(103))\right)^(x)\right] ^(2)-(103)/(3.3) = 0 Existence of multiplicative inverse/Definition of division/Modulative property/
a^(b)\cdot a^(c) = a^(b+c)

6)
\left((3.3)/(√(103)) \right)^(2\cdot x)=(103)/(3.3) Existence of additive inverse/Modulative property/
(a^(b))^(c) = a^(b\cdot c)

7)
\log \left((3.3)/(√(103)) \right)^(2\cdot x)=\log (103)/(3.3) Definition of logarithm.

8)
2\cdot x\cdot \log \left((3.3)/(√(103)) \right)= \log (103)/(3.3)
\log_(b) a^(c) = c\cdot \log_(b) a

9)
2\cdot x \cdot [\log 3.3-\log √(103)] = \log 103 - \log 3.3
\log_(b) (a)/(d)

10)
x\cdot (2\cdot \log 3.3-\log 103) = \log 103 - \log 3.3
\log_(b) a^(c) = c\cdot \log_(b) a/Associative property

11)
x = (\log 103-\log 3.3)/(2\cdot \log 3.3-\log 103) Existence of multiplicative inverse/Definition of division/Modulative property

12)
x \approx -1.531 Result

The value of
x is approximately -1.531.

User Chanzerre
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories