Answer:
The value of
is approximately -1.531.
Explanation:
Let
, we proceed to solve this expression by algebraic means:
1)
Given
2)
![a^(b)\cdot a^(c) = a^(b+c)](https://img.qammunity.org/2021/formulas/mathematics/college/wst8ng6wzc2hn0huk2tab33aacdpddktv4.png)
3)
![(a^(b))^(c) = a^(b\cdot c)](https://img.qammunity.org/2021/formulas/mathematics/college/fekjumso0ke7im0peqiunsi4hpyjfra4r5.png)
4)
/Commutative property
5)
Existence of multiplicative inverse/Definition of division/Modulative property/
![a^(b)\cdot a^(c) = a^(b+c)](https://img.qammunity.org/2021/formulas/mathematics/college/wst8ng6wzc2hn0huk2tab33aacdpddktv4.png)
6)
Existence of additive inverse/Modulative property/
![(a^(b))^(c) = a^(b\cdot c)](https://img.qammunity.org/2021/formulas/mathematics/college/fekjumso0ke7im0peqiunsi4hpyjfra4r5.png)
7)
Definition of logarithm.
8)
![\log_(b) a^(c) = c\cdot \log_(b) a](https://img.qammunity.org/2021/formulas/mathematics/college/76ma52842vwz3ubev2j6spnzux63q74x3x.png)
9)
![\log_(b) (a)/(d)](https://img.qammunity.org/2021/formulas/mathematics/college/cgclai6mtazz9zy2ox1fhpzp2j80yvchzd.png)
10)
/Associative property
11)
Existence of multiplicative inverse/Definition of division/Modulative property
12)
Result
The value of
is approximately -1.531.