Answer:
![\displaystyle\int e^(-x)\cos(2x)\, dx=(2\sin(2x)-\cos(2x))/(5e^x)+C](https://img.qammunity.org/2021/formulas/mathematics/college/bcnq7zq4tqhycd2odogfj533yp00cz5q3u.png)
Explanation:
We would like to integrate the following integral:
![\displaystyle \int e^(-x)\cdot \cos(2x)\, dx](https://img.qammunity.org/2021/formulas/mathematics/college/asexpnitpwermnaj5vgxkon1me9ubs2fn8.png)
Since this is a product of two functions, we can consider using Integration by Parts given by:
![\displaystyle \int u\, dv =uv-\int v\, du](https://img.qammunity.org/2021/formulas/mathematics/college/aiiu9l7hf71bitp87sqmqsi8997ev0r520.png)
So, let’s choose our u and dv. We can choose u base on the following guidelines: LIATE; or, logarithmic, inverse trig., algebraic, trigonometric, and exponential.
Since trigonometric comes before exponential, we will let:
![u=\cos(2x)\text{ and } dv=e^(-x)\, dx](https://img.qammunity.org/2021/formulas/mathematics/college/cn5iz4hmchef9cgfmwuxqgoyh00k3lilkq.png)
By finding the differential of the left and integrating the right, we acquire:
![du=-2\sin(2x)\text{ and } v=-e^(-x)](https://img.qammunity.org/2021/formulas/mathematics/college/re3htdi6gd44ufd03vyfb0m9umfqfrpeat.png)
So, our integral becomes:
![\displaystyle \int e^(-x)\cdot \cos(2x)\, dx=(\cos(2x))(-e^(-x))-\int (-e^(-x))(-2\sin(2x))\, dx](https://img.qammunity.org/2021/formulas/mathematics/college/cvz1xk3r2am7a73oqu1nndds3j6rcrbsjz.png)
Simplify:
![\displaystyle \int e^(-x)\cdot \cos(2x)\, dx=-e^(-x)\cos(2x)-2\int e^(-x)\sin(2x)\, dx](https://img.qammunity.org/2021/formulas/mathematics/college/sjp5oqamwuvsyyjuz18xiilzxjaj12byc8.png)
Since we ended up with another integral of a product of two functions, we can apply integration by parts again. Using the above guidelines, we get that:
![u=\sin(2x)\text{ and } dv=e^(-x)\, dx](https://img.qammunity.org/2021/formulas/mathematics/college/mgtjdsgipzfvq3qjmd1d1yqqg73r0czl3d.png)
By finding the differential of the left and integrating the right, we acquire:
![du=2\cos(2x)\, dx\text{ and } v=-e^(-x)](https://img.qammunity.org/2021/formulas/mathematics/college/wh0gy3iam9jjxpuemwqd0ywvnrr9ao3wiy.png)
This yields:
![\displaystyle \int e^(-x)\cdot \cos(2x)\, dx=-e^(-x)\cos(2x)-2\Big[(\sin(2x))(-e^(-x))-\int (-e^(-x))(2\sin(2x))\, dx\Big]](https://img.qammunity.org/2021/formulas/mathematics/college/a8p76zad3umejv5tj12itggf547o005f8k.png)
Simplify:
![\displaystyle \int e^(-x)\cdot \cos(2x)\, dx=-e^(-x)\cos(2x)-2\Big[-e^(-x)\sin(2x)+2\int e^(-x)\cos(2x)\, dx\Big]](https://img.qammunity.org/2021/formulas/mathematics/college/udp2l9ex1svw0wmnbljjqrmwr8zw0g54b2.png)
We can distribute:
![\displaystyle \int e^(-x)\cdot \cos(2x)\, dx=-e^(-x)\cos(2x)+2e^(-x)\sin(2x)-4\int e^(-x)\cos(2x)\, dx](https://img.qammunity.org/2021/formulas/mathematics/college/94abd9ocrquyj360jc70c3g78giok9qc7k.png)
The integral on the right is the same as our original integral. So, we can isolate it:
![\displaystyle \Big(\int e^(-x)\cos(2x)\, dx\Big)+4\Big(\int e^(-x)\cos(2x)\, dx)\Big)=-e^(-x)\cos(2x)+2e^(-x)\sin(2x)](https://img.qammunity.org/2021/formulas/mathematics/college/lpundxpvnx9xachw340gythresfdjauib3.png)
Combine like integrals:
![\displaystyle 5 \int e^(-x)\cos(2x)\, dx=-e^(-x)\cos(2x)+2e^(-x)\sin(2x)](https://img.qammunity.org/2021/formulas/mathematics/college/gg7ow1ks5ucj3t7yac7p3ujk1vxpvpnmui.png)
We can factor out an e⁻ˣ from the right:
![\displaystyle 5\int e^(-x)\cos(2x)\, dx=e^(-x)\Big(-\cos(2x)+2\sin(2x)\Big)](https://img.qammunity.org/2021/formulas/mathematics/college/d461dmvflb9jr47icruziw13ubzmg9g2mz.png)
Dividing both sides by 5 yields:
![\displaystyle \int e^(-x)\cos(2x)\, dx=(e^(-x))/(5)\Big(-\cos(2x)+2\sin(2x)\Big)](https://img.qammunity.org/2021/formulas/mathematics/college/u1yko86126mem8w7akyoi92k1h10opph5b.png)
Rewrite. We of course also need the constant of integration. Therefore, our final answer is:
![\displaystyle\int e^(-x)\cos(2x)\, dx=(2\sin(2x)-\cos(2x))/(5e^x)+C](https://img.qammunity.org/2021/formulas/mathematics/college/bcnq7zq4tqhycd2odogfj533yp00cz5q3u.png)