Answer:
The magnitude will be "353.5 N". A further solution is given below.
Step-by-step explanation:
The given values is:
F = 500 N
According to the question,
In ΔABC,
⇒
![\angle BCA = (90-30)](https://img.qammunity.org/2021/formulas/physics/high-school/ug3nsoel36yz9xconwxdittaeef3jx4ekj.png)
⇒
![=60^(\circ)](https://img.qammunity.org/2021/formulas/physics/high-school/jarusx2hzl6ds2uwazwt88dp82izg72nth.png)
then,
⇒
![\angle BAC=(180-45-60)](https://img.qammunity.org/2021/formulas/physics/high-school/oy8kn125muqk9n1yt1z1i0lonjwsq7yh08.png)
⇒
![=75^(\circ)](https://img.qammunity.org/2021/formulas/physics/high-school/qle9570clw07snrmpa23yk6g26kesdadxk.png)
Now,
The corresponding angle will be:
⇒
![\angle FAC=60^(\circ)](https://img.qammunity.org/2021/formulas/physics/high-school/q6grd4porj5dcme72kwlush8sjx3n1tpz6.png)
⇒
![\angle FAB=70+60](https://img.qammunity.org/2021/formulas/physics/high-school/h8tifpxo86bmneko0z8tv34sqagdzqa5z4.png)
⇒
![=135^(\circ)](https://img.qammunity.org/2021/formulas/physics/high-school/568uei3wjzi0hq80dyvuicdnwei3sdzflu.png)
Aspect of F across the AC arm will be:
=
![F* cos(60)](https://img.qammunity.org/2021/formulas/physics/high-school/ey6yhc4qnnlk4c3v6rhaqidp2jgqrgxlg5.png)
On putting the values of F, we get
=
![500* (.5)](https://img.qammunity.org/2021/formulas/physics/high-school/ltz45n61kenfofd3voh5bpop6euvnnsdiw.png)
=
![200 \ Newton](https://img.qammunity.org/2021/formulas/physics/high-school/vgx5meyzr2ap08wj3hee3nm33judwv3x9q.png)
Component F along the AC (in magnitude) will be:
=
![F* cos(135)](https://img.qammunity.org/2021/formulas/physics/high-school/1d9f9fn1kyik7tojekdzkviraf0wukvwy9.png)
=
![500* (-.707)](https://img.qammunity.org/2021/formulas/physics/high-school/naqerktnuppfay9n0yiej7clbprifug94r.png)
=
![-353.5 \ N \](https://img.qammunity.org/2021/formulas/physics/high-school/pxu8zg28v0naytwfvqpo3xlq7c8agp78bl.png)