143k views
5 votes
What is the value of sin {3sin^-1 (2/5)} ?​

1 Answer

4 votes

Answer:


\displaystyle (118)/(125)

Explanation:

Trigonometry

Calculate


\sin (3\sin^(-1)(2/5))

We use the formula for the sine of triple angle:


\sin 3x=3\sin x-4\sin^3 x

And recall:


\sin \sin^(-1)x=x

For this problem, we set:


x=\sin^(-1)(2/5)

Thus:


\sin 3x=3\sin (\sin^(-1)(2/5))-4\sin^3 (\sin^(-1)(2/5))


\displaystyle \sin 3x=3*(2)/(5)-4\left((2)/(5)\right)^3


\displaystyle \sin 3x=(6)/(5)-4*(8)/(125)


\displaystyle \sin 3x=(6)/(5)-(32)/(125)


\displaystyle \sin 3x=(6*25)/(125)-(32)/(125)


\displaystyle \sin 3x=(150-32)/(125)


\mathbf{\displaystyle \sin 3x=(118)/(125)}

User KhaoulaAtallah
by
5.2k points