143k views
5 votes
What is the value of sin {3sin^-1 (2/5)} ?​

1 Answer

4 votes

Answer:


\displaystyle (118)/(125)

Explanation:

Trigonometry

Calculate


\sin (3\sin^(-1)(2/5))

We use the formula for the sine of triple angle:


\sin 3x=3\sin x-4\sin^3 x

And recall:


\sin \sin^(-1)x=x

For this problem, we set:


x=\sin^(-1)(2/5)

Thus:


\sin 3x=3\sin (\sin^(-1)(2/5))-4\sin^3 (\sin^(-1)(2/5))


\displaystyle \sin 3x=3*(2)/(5)-4\left((2)/(5)\right)^3


\displaystyle \sin 3x=(6)/(5)-4*(8)/(125)


\displaystyle \sin 3x=(6)/(5)-(32)/(125)


\displaystyle \sin 3x=(6*25)/(125)-(32)/(125)


\displaystyle \sin 3x=(150-32)/(125)


\mathbf{\displaystyle \sin 3x=(118)/(125)}

User KhaoulaAtallah
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories