159k views
5 votes
Plss answer!!
MERRY Christmas!!!
Critical Question. AAAAA​

Plss answer!! MERRY Christmas!!! Critical Question. AAAAA​-example-1
User BgRva
by
6.6k points

1 Answer

7 votes

Answer:

Explanation:

abc = 1

We have to prove that,


(1)/(1+a+b^(-1))+(1)/(1+b+c^(-1))+(1)/(1+c+a^(-1))=1

We take left hand side of the given equation and solve it,


(1)/(1+a+(1)/(b))+(1)/(1+b+(1)/(c))+(1)/(1+c+(1)/(a))

Since, abc = 1,


(1)/(c)=ab and c =
(1)/(ab)

By substituting these values in the expression,


(1)/(1+a+(1)/(b))+(1)/(1+b+(1)/(c))+(1)/(1+c+(1)/(a))=(1)/(1+a+(1)/(b))+(1)/(1+b+ab)+(1)/(1+(1)/(ab)+(1)/(a))


=(b)/(b+ab+1)+(1)/(1+b+ab)+(ab)/(ab+1+b)


=(1+b+ab)/(1+b+ab)


=1

Which equal to the right hand side of the equation.

Hence,
(1)/(1+a+b^(-1))+(1)/(1+b+c^(-1))+(1)/(1+c+a^(-1))=1

User Kanso
by
7.6k points