Answer:
KL = 50
Explanation:
∆JML is similar to ∆JNL. it follows that:
[tex] \frac{JM}{JN} = \frac{JL}{JK} [\tex]
JM = 4 + 20 = 24
JN = 4
JL = 10 + KL
JK = 10
Plug in the values
[tex] \frac{24}{4} = \frac{10 + KL}{10} [\tex]
[tex] 6 = \frac{10 + KL}{10} [\tex]
Multiply both sides by 10
[tex] 6*10 = \frac{10 + KL}{10}*10 [\tex]
[tex] 60 = 10 + KL [\tex]
Subtract 10 from each side
[tex] 60 - 10 = KL [\tex]
[tex] 50 = KL [\tex]
KL = 50