Solution :
The diameter of the tank = 3 m = 300 cm
Radius of the tank = 1.5 m = 150 cm
Height of the tank = 8 m = 800 cm
The rate of increase of height of water level = 26 cm/min
∴
![$(dh)/(dt) = 20 \ cm/min$](https://img.qammunity.org/2021/formulas/mathematics/college/hbrziu51zrwp474o4rppszrs0h3cyi1ldr.png)
The water is leaking at a rate of = 10700 cubic centimeters per min
∴ rate out = 10,700
![$cm^3 / cm $](https://img.qammunity.org/2021/formulas/mathematics/college/om8lmdfxeiqglkh5v2wqjdwed3f9ou2z6e.png)
At time 't', the height of water level is 'h' with radius 'r' and volume 'V'.
By the property of similarity of triangles we can write
![$(h)/(r) = (800)/(150) $](https://img.qammunity.org/2021/formulas/mathematics/college/86sp3kwhd5wjappvq0ttla6zbke6dxspl1.png)
![$(h)/(r) = (16)/(3) $](https://img.qammunity.org/2021/formulas/mathematics/college/tdlm28l2f1ec0onulgrq6gax6mrtilkm16.png)
![$r = (3)/(16)h$](https://img.qammunity.org/2021/formulas/mathematics/college/ot0ajm7975vm8owyu42xlaf814ltkjo7zn.png)
Volume of water at time 't' is given as
![$V= (1)/(3) \pi r^2 h $](https://img.qammunity.org/2021/formulas/mathematics/college/tl6vofde0h72xf6g03b2csejno780z2bx2.png)
![$V= (1)/(3) \pi \left((3)/(16)h\right)^2 h $](https://img.qammunity.org/2021/formulas/mathematics/college/174nbtdnj7vc1q4m57k6o6k897bjewfqij.png)
![$V =(3)/(256) \pi h^3$](https://img.qammunity.org/2021/formulas/mathematics/college/4vm9l9he3mnkmjf7ezz8n2t1d5j56vlg3y.png)
Now differentiating w.r.t 't'
![$(dv)/(dt) = (9)/(256) \pi h^2 (dh)/(dt)$](https://img.qammunity.org/2021/formulas/mathematics/college/iukve1thadtte1ms10fe505gvknv2vtmk2.png)
The rate of increase in tank = rate of inward flow - rate of outward flow
= rate of inward flow - 10,700
rate of inflow = 10,700 +
![$ (9)/(256) \pi h^2 (dh)/(dt)$](https://img.qammunity.org/2021/formulas/mathematics/college/om327c1e0ri3vs34x0r8p3mjdx40wal2ub.png)
Substituting the values we get
rate of inflow = 10,700 +
![$ (9)/(256) * 3.14 * (250)^2 * 26$](https://img.qammunity.org/2021/formulas/mathematics/college/o8l62jw0r30or8v9d1t3en8506nitwjr8y.png)
∴ rate of inward flow =
![$1.9 * 10^5 \ cm^3/min$](https://img.qammunity.org/2021/formulas/mathematics/college/d9qnqpk8edqckz6be4nhbzijko2y7aeihu.png)