41.9k views
11 votes
Solve the following compound inequality: (1 point)

-2(x+8) +6 > x-4 or -3x + 12 < 6(x-4)
0x<2 orx>4
Ox>2 orx<4
0x<-2 orx>4
Ox>-2 orx<44

1 Answer

5 votes


\quad \huge \quad \quad \boxed{ \tt \:Answer }


\qquad \tt \rightarrow \: x < -2 \:\: or \:\; x >4

____________________________________


\large \tt Solution \: :


\textsf{First Inequality :}


\qquad \tt \rightarrow \: - 2(x + 8) + 6 > x - 4


\qquad \tt \rightarrow \: - 2x - 16 + 6 > x - 4


\qquad \tt \rightarrow \: - 2x - 10 > x - 4


\qquad \tt \rightarrow \: - 10 + 4 > x + 2x


\qquad \tt \rightarrow \: - 6 > 3x


\qquad \tt \rightarrow \: - \cfrac{ 6}{3} > x


\qquad \tt \rightarrow \: - 2 > x


\qquad \tt \rightarrow \: \therefore x < - 2


\textsf{Second Inequality :}


\qquad \tt \rightarrow \: - 3x + 12 < 6(x - 4)


\qquad \tt \rightarrow \: - 3x + 12 < 6x - 24


\qquad \tt \rightarrow \: 12 + 24 < 6x + 3x


\qquad \tt \rightarrow \: 36 < 9x


\qquad \tt \rightarrow \: \cfrac{36}{9} < x


\qquad \tt \rightarrow \: 4 < x


\qquad \tt \rightarrow \: \therefore x > 4

Answered by : ❝ AǫᴜᴀWɪᴢ ❞

User Tortal
by
4.4k points