183k views
0 votes
A fraction becomes 4÷5 if 1 is added to both numerator and denominator. If, however, 5 is subtracted from both numerator and denominator , the fraction becomes 1÷2. Find tge fraction by using crammer rule.

1 Answer

4 votes

Answer:


(7)/(9)

Explanation:


(x+1)/(y+1)=(4)/(5)\\\Rightarrow 5x-4y=-1


(x-5)/(y-5)=(1)/(2)\\\Rightarrow 2x-y=5

Putting it in matrix form


\begin{bmatrix}a_(1)&b_(1)\\a_(2)&b_(2)\end{bmatrix}{\begin{bmatrix}x\\y\end{bmatrix}=\begin{bmatrix}{c_(1)}\\{c_(2)}\end{bmatrix}\\\Rightarrow\begin{bmatrix}5 & -4\\2 & -1\end{bmatrix}\begin{bmatrix}x\\ y\end{bmatrix}=\begin{bmatrix}-1\\ 5\end{bmatrix}

From Cramer's rule we have


x=\frac{\begin{vmatrix}c_1 &b_1 \\ c_2 & b_2\end{vmatrix}}{\begin{vmatrix}a_1 &b_1 \\ a_2& b_2\end{vmatrix}}\\\Rightarrow x=\frac{\begin{vmatrix}-1 &-4 \\ 5 & -1\end{vmatrix}}{\begin{vmatrix}5 &-4 \\ 2& -1\end{vmatrix}}\\\Rightarrow x=(1+20)/(-5+8)\\\Rightarrow x=7


y=\frac{\begin{vmatrix}a_1 &c_1 \\ a_2 & c_1\end{vmatrix}}{\begin{vmatrix}a_1 &b_1 \\ a_2& b_2\end{vmatrix}}\\\Rightarrow y=\frac{\begin{vmatrix}5 &-1 \\ 2 & 5\end{vmatrix}}{\begin{vmatrix}5 &-4 \\ 2& -1 \end{vmatrix}}\\\Rightarrow y=(25+2)/(-5+8)\\\Rightarrow y=9

Verifying the results


(7+1)/(9+1)=(8)/(10)=(4)/(5)


(7-5)/(9-5)=(2)/(4)=(1)/(2)

Hence, the fraction is
(7)/(9).

User CGodo
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories