165k views
4 votes
The factor of 2ax^2+4axy+3bx^2+2ay^2+6bxy^+3by^2

User Strttn
by
4.7k points

1 Answer

4 votes

Answer:


2ax^2+4axy+3bx^2+2ay^2+6bxy+3by^2= (x+y)^2(2a+3b)

Step-by-step explanation:

Given


2ax^2+4axy+3bx^2+2ay^2+6bxy+3by^2

Required

Factorize


2ax^2+4axy+3bx^2+2ay^2+6bxy+3by^2

Rewrite as:


2ax^2+4axy+2ay^2+3bx^2+6bxy+3by^2

Use square parenthesis


[2ax^2+4axy+2ay^2]+[3bx^2+6bxy+3by^2]

Expand each bracket


[2ax^2+2axy+2axy+2ay^2]+[3bx^2+3bxy+3bxy+3by^2]

Factorize each:


[2ax(x+y) + 2ay(x+y)]+[3bx(x+y)+3by(x+y)]


[(2ax+2ay)(x+y)]+[(3bx+3by)(x+y)]

Further, factorize:


(x+y)[(2ax+2ay)]+[(3bx+3by)]


(x+y)[(2ax+2ay)+(3bx+3by)]

Remove bracket


(x+y)[2ax+2ay+3bx+3by]

Reorder:


(x+y)[2ax+3bx+2ay+3by]

Factorize:


(x+y)[x(2a+3b)+y(2a+3b)]


(x+y)[(x+y)(2a+3b)]

Remove square bracket


(x+y)(x+y)(2a+3b)

This gives:


(x+y)^2(2a+3b)

Hence:


2ax^2+4axy+3bx^2+2ay^2+6bxy+3by^2= (x+y)^2(2a+3b)

User Victor Sergienko
by
5.2k points