193k views
5 votes
Which of the points is a solution to the following system of equations? -5x- 3/2y=15 3x+5/6 y=-44/3

1 Answer

4 votes

Note: Your question sounds a little unclear, but I am assuming that your system of equations is:


-5x-\:(3)/(2)y=15


3x+(5)/(6)y=-(44)/(3)

  • It would anyways clear your concept because the procedure to find the solutions remains the same for any set of a system of equations.

Answer:

The solution of the system of equations be:


x=-(57)/(2),\:y=85

Explanation:

Given the system of equations


-5x-\:(3)/(2)y=15


3x+(5)/(6)y=-(44)/(3)

solving the system of equations


\begin{bmatrix}-5x-(3)/(2)y=15\\ 3x+(5)/(6)y=-(44)/(3)\end{bmatrix}


\mathrm{Multiply\:}-5x-(3)/(2)y=15\mathrm{\:by\:}3\:\mathrm{:}\:\quad \:-15x-(9)/(2)y=45


\mathrm{Multiply\:}3x+(5)/(6)y=-(44)/(3)\mathrm{\:by\:}5\:\mathrm{:}\:\quad \:15x+(25)/(6)y=-(220)/(3)

so the system of equations becomes


\begin{bmatrix}-15x-(9)/(2)y=45\\ 15x+(25)/(6)y=-(220)/(3)\end{bmatrix}

adding the equations


15x+(25)/(6)y=-(220)/(3)


+


\underline{-15x-(9)/(2)y=45}


-(1)/(3)y=-(85)/(3)

so


\begin{bmatrix}-15x-(9)/(2)y=45\\ -(1)/(3)y=-(85)/(3)\end{bmatrix}

solving
-(1)/(3)y=-(85)/(3) for y


-(1)/(3)y=-(85)/(3)

Multiply both sides by -3


\left(-(1)/(3)y\right)\left(-3\right)=\left(-(85)/(3)\right)\left(-3\right)


y=85


\mathrm{For\:}-15x-(9)/(2)y=45\mathrm{\:plug\:in\:}y=85


-15x-(9)/(2)\cdot \:85=45


\mathrm{Add\:}(765)/(2)\mathrm{\:to\:both\:sides}


-15x-(765)/(2)+(765)/(2)=45+(765)/(2)


-15x=(855)/(2)


\mathrm{Divide\:both\:sides\:by\:}-15


(-15x)/(-15)=((855)/(2))/(-15)


x=-(57)/(2)

Therefore, the solution of the system of equations be:


x=-(57)/(2),\:y=85

User ZJS
by
3.6k points