194k views
5 votes
Which of the points is a solution to the following system of equations? -5x- 3/2y=15 3x+5/6 y=-44/3

1 Answer

4 votes

Note: Your question sounds a little unclear, but I am assuming that your system of equations is:


-5x-\:(3)/(2)y=15


3x+(5)/(6)y=-(44)/(3)

  • It would anyways clear your concept because the procedure to find the solutions remains the same for any set of a system of equations.

Answer:

The solution of the system of equations be:


x=-(57)/(2),\:y=85

Explanation:

Given the system of equations


-5x-\:(3)/(2)y=15


3x+(5)/(6)y=-(44)/(3)

solving the system of equations


\begin{bmatrix}-5x-(3)/(2)y=15\\ 3x+(5)/(6)y=-(44)/(3)\end{bmatrix}


\mathrm{Multiply\:}-5x-(3)/(2)y=15\mathrm{\:by\:}3\:\mathrm{:}\:\quad \:-15x-(9)/(2)y=45


\mathrm{Multiply\:}3x+(5)/(6)y=-(44)/(3)\mathrm{\:by\:}5\:\mathrm{:}\:\quad \:15x+(25)/(6)y=-(220)/(3)

so the system of equations becomes


\begin{bmatrix}-15x-(9)/(2)y=45\\ 15x+(25)/(6)y=-(220)/(3)\end{bmatrix}

adding the equations


15x+(25)/(6)y=-(220)/(3)


+


\underline{-15x-(9)/(2)y=45}


-(1)/(3)y=-(85)/(3)

so


\begin{bmatrix}-15x-(9)/(2)y=45\\ -(1)/(3)y=-(85)/(3)\end{bmatrix}

solving
-(1)/(3)y=-(85)/(3) for y


-(1)/(3)y=-(85)/(3)

Multiply both sides by -3


\left(-(1)/(3)y\right)\left(-3\right)=\left(-(85)/(3)\right)\left(-3\right)


y=85


\mathrm{For\:}-15x-(9)/(2)y=45\mathrm{\:plug\:in\:}y=85


-15x-(9)/(2)\cdot \:85=45


\mathrm{Add\:}(765)/(2)\mathrm{\:to\:both\:sides}


-15x-(765)/(2)+(765)/(2)=45+(765)/(2)


-15x=(855)/(2)


\mathrm{Divide\:both\:sides\:by\:}-15


(-15x)/(-15)=((855)/(2))/(-15)


x=-(57)/(2)

Therefore, the solution of the system of equations be:


x=-(57)/(2),\:y=85

User ZJS
by
7.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories