Answer:
![P[at\ least\ 1] = 0.9961](https://img.qammunity.org/2021/formulas/mathematics/college/bv9g6qe23co80biu8fgvedz875vhsw17x4.png)
Explanation:
Given
![Questions = 8](https://img.qammunity.org/2021/formulas/mathematics/college/dsv1at62zpn0i93c5cnty27pmnv1mitrbf.png)
![Quiz\ Type = True\ or\ False](https://img.qammunity.org/2021/formulas/mathematics/college/jth8jwo6g06a81v6g4vb1d6hferf0nk0cf.png)
Required
Probability that s/he gets at least one correctly
First, we calculate the probability of answering a question correctly
Since, there are just 2 choices (true or false), the probability is:
![P(correct) = (1)/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/djxtvo28oj60uimi6jdu262oegg9g07ny3.png)
Similarly, the probability of answering a question, wrongly is:
![P(wrong) = (1)/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/gw2zuzdubq3qnwt8d65gmhoflq5lmuryqj.png)
The following relationship exists, in probability:
![P[at\ least\ 1] = 1 - P[none]](https://img.qammunity.org/2021/formulas/mathematics/college/zglinj5tcaqmgmlkmu8gqkt8kjyux0tdv3.png)
So, to calculate the required probability.
First, we calculate the probability that he answers none of the 8 questions correctly.
![P[none] = p(wrong)^8](https://img.qammunity.org/2021/formulas/mathematics/college/7ozcxnbrri923k5e2buk8fkj817v8a4hte.png)
![P[none] = ((1)/(2))^8](https://img.qammunity.org/2021/formulas/mathematics/college/ua37gxbzxl01ftmqbesyt530smujg1opyx.png)
Substitute
in
![P[at\ least\ 1] = 1 - P[none]](https://img.qammunity.org/2021/formulas/mathematics/college/zglinj5tcaqmgmlkmu8gqkt8kjyux0tdv3.png)
![P[at\ least\ 1] = 1 - ((1)/(2))^8](https://img.qammunity.org/2021/formulas/mathematics/college/u5jhxt22dfjbacl9wvd8vs8l8gsb4056nv.png)
![P[at\ least\ 1] = 1 - (1)/(256)](https://img.qammunity.org/2021/formulas/mathematics/college/uiz9zwjaer3xno0hvhack7fof6qs8rkrim.png)
Take LCM
![P[at\ least\ 1] = (256 - 1)/(256)](https://img.qammunity.org/2021/formulas/mathematics/college/z31uteh4h2iobbvcl3vwkekujkoieaob6o.png)
![P[at\ least\ 1] = (255)/(256)](https://img.qammunity.org/2021/formulas/mathematics/college/yeuklobvtmyb4ygryw6o9aixt3nf8w6q2t.png)
![P[at\ least\ 1] = 0.9961](https://img.qammunity.org/2021/formulas/mathematics/college/bv9g6qe23co80biu8fgvedz875vhsw17x4.png)
Hence, the probability that s/he gets at least one correctly is 0.9961