134,050 views
18 votes
18 votes
The Pythagorean Identity states that: (sin x)^2 + (cos x)2 = 1

Given sin 0 = 2/5, find cos 0.

cos 0 = ?/?

The Pythagorean Identity states that: (sin x)^2 + (cos x)2 = 1 Given sin 0 = 2/5, find-example-1
User Lauren Van Sloun
by
3.3k points

1 Answer

11 votes
11 votes

Answer:


\cos \theta =(√(21))/(5)

Explanation:

Given:


  • \sin \theta=(2)/(5)

  • (\sin x)^2+(\cos x)^2=1

Substitute the given value of sin θ into the given identity and solve for cos θ:


\begin{aligned}(\sin x)^2+(\cos x)^2 & =1\\\implies (\sin \theta)^2+(\cos \theta)^2 & =1\\\left((2)/(5)\right)^2+(\cos \theta)^2 & =1\\\left((2^2)/(5^2)\right)+(\cos \theta)^2 & =1\\(4)/(25)+(\cos \theta)^2 & =1\\(\cos \theta)^2 & =1-(4)/(25)\\(\cos \theta)^2 & =(21)/(25)\\\cos \theta & =\sqrt{(21)/(25)}\\\cos \theta & =(√(21))/(√(25))\\\cos \theta & =(√(21))/(5)\end{aligned}

User Montmons
by
3.3k points