212k views
1 vote
Rewrite using a single positive exponent .
3^-3 × 8^-6


User XShirase
by
8.2k points

1 Answer

5 votes

Answer:

We conclude that


3^(-3)* \:8^(-6)=(1)/(8^6* \:\:3^3)

Explanation:

Given the expression


3^(-3)* \:8^(-6)


\mathrm{Apply\:exponent\:rule}:\quad \:a^(-b)=(1)/(a^b)


3^(-3)*\:8^(-6)=8^(-6)* \:(1)/(3^3)


\mathrm{Apply\:exponent\:rule}:\quad \:a^(-b)=(1)/(a^b)


=(1)/(3^3)* (1)/(8^6)


\mathrm{Multiply\:fractions}:\quad (a)/(b)* (c)/(d)=(a\:* \:c)/(b\:* \:d)


=(1* \:1)/(3^3* \:8^6)


=(1)/(8^6* \:3^3)

Therefore, we conclude that


3^(-3)* \:8^(-6)=(1)/(8^6* \:\:3^3)

User Pchiusano
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories