212k views
1 vote
Rewrite using a single positive exponent .
3^-3 × 8^-6


User XShirase
by
8.2k points

1 Answer

5 votes

Answer:

We conclude that


3^(-3)* \:8^(-6)=(1)/(8^6* \:\:3^3)

Explanation:

Given the expression


3^(-3)* \:8^(-6)


\mathrm{Apply\:exponent\:rule}:\quad \:a^(-b)=(1)/(a^b)


3^(-3)*\:8^(-6)=8^(-6)* \:(1)/(3^3)


\mathrm{Apply\:exponent\:rule}:\quad \:a^(-b)=(1)/(a^b)


=(1)/(3^3)* (1)/(8^6)


\mathrm{Multiply\:fractions}:\quad (a)/(b)* (c)/(d)=(a\:* \:c)/(b\:* \:d)


=(1* \:1)/(3^3* \:8^6)


=(1)/(8^6* \:3^3)

Therefore, we conclude that


3^(-3)* \:8^(-6)=(1)/(8^6* \:\:3^3)

User Pchiusano
by
8.3k points