231k views
9 votes
Can someone check whether its correct or no? this is supposed to be the steps in integration by parts​

Can someone check whether its correct or no? this is supposed to be the steps in integration-example-1
User Octavian
by
4.0k points

1 Answer

11 votes

Answer:


\displaystyle - \int (\sin(2x))/(e^(2x))\: \text{d}x=(\sin(2x))/(4e^(2x))+(\cos(2x))/(4e^(2x))+\text{C}

Explanation:

Fundamental Theorem of Calculus


\displaystyle \int \text{f}(x)\:\text{d}x=\text{F}(x)+\text{C} \iff \text{f}(x)=\frac{\text{d}}{\text{d}x}(\text{F}(x))

If differentiating takes you from one function to another, then integrating the second function will take you back to the first with a constant of integration.

Given integral:


\displaystyle -\int (\sin(2x))/(e^(2x))\:\text{d}x


\textsf{Rewrite }(1)/(e^(2x)) \textsf{ as }e^(-2x) \textsf{ and bring the negative inside the integral}:


\implies \displaystyle \int -e^(-2x)\sin(2x)\:\text{d}x

Use integration by parts.


\boxed{\begin{minipage}{5 cm}\underline{Integration by parts} \\\\$\displaystyle \int u \frac{\text{d}v}{\text{d}x}\:\text{d}x=uv-\int v\: \frac{\text{d}u}{\text{d}x}\:\text{d}x$ \\ \end{minipage}}


\textsf{Let }\:u=\sin (2x) \implies \frac{\text{d}u}{\text{d}x}=2 \cos (2x)


\textsf{Let }\:\frac{\text{d}v}{\text{d}x}=-e^(-2x) \implies v=(1)/(2)e^(-2x)

Substituting the defined parts into the formula:


\begin{aligned}\implies \displaystyle -\int e^(-2x)\sin(2x)\:\text{d}x & =(1)/(2)e^(-2x)\sin (2x)- \int (1)/(2)e^(-2x) \cdot 2 \cos (2x)\:\text{d}x\\\\& =(1)/(2)e^(-2x)\sin (2x)- \int e^(-2x) \cos (2x)\:\text{d}x\end{aligned}


\displaystyle \textsf{For }\:-\int e^(-2x) \cos (2x)\:\text{d}x \quad \textsf{integrate by parts}:


\textsf{Let }\:u=\cos(2x) \implies \frac{\text{d}u}{\text{d}x}=-2 \sin(2x)


\textsf{Let }\:\frac{\text{d}v}{\text{d}x}=-e^(-2x) \implies v=(1)/(2)e^(-2x)


\begin{aligned}\implies \displaystyle -\int e^(-2x)\cos(2x)\:\text{d}x & =(1)/(2)e^(-2x)\cos(2x)- \int (1)/(2)e^(-2x) \cdot -2 \sin(2x)\:\text{d}x\\\\& =(1)/(2)e^(-2x)\cos(2x)+ \int e^(-2x) \sin(2x)\:\text{d}x\end{aligned}

Therefore:


\implies \displaystyle -\int e^(-2x)\sin(2x)\:\text{d}x =(1)/(2)e^(-2x)\sin (2x) +(1)/(2)e^(-2x)\cos(2x)+ \int e^(-2x) \sin(2x)\:\text{d}x


\textsf{Subtract }\: \displaystyle \int e^(-2x)\sin(2x)\:\text{d}x \quad \textsf{from both sides and add the constant C}:


\implies \displaystyle -2\int e^(-2x)\sin(2x)\:\text{d}x =(1)/(2)e^(-2x)\sin (2x) +(1)/(2)e^(-2x)\cos(2x)+\text{C}

Divide both sides by 2:


\implies \displaystyle -\int e^(-2x)\sin(2x)\:\text{d}x =(1)/(4)e^(-2x)\sin (2x) +(1)/(4)e^(-2x)\cos(2x)+\text{C}

Rewrite in the same format as the given integral:


\displaystyle \implies - \int (\sin(2x))/(e^(2x))\: \text{d}x=(\sin(2x))/(4e^(2x))+(\cos(2x))/(4e^(2x))+\text{C}

Differentiation Rules used:


\boxed{\begin{minipage}{5.7 cm}\underline{Differentiating $\sin(k)$}\\\\If $y=\sin(kx)$, then $\frac{\text{d}y}{\text{d}x}=k\cos(kx)$\\\end{minipage}}


\boxed{\begin{minipage}{5.7 cm}\underline{Differentiating $\cos(k)$}\\\\If $y=\cos(kx)$, then $\frac{\text{d}y}{\text{d}x}=-k\sin(kx)$\\\end{minipage}}

Integration Rules used:


\boxed{\begin{minipage}{4 cm}\underline{Integrating $e^(kx)$}\\\\$\displaystyle \int e^(kx)\:\text{d}x=(1)/(k)e^(kx)+\text{C}$\end{minipage}}

User Vamsi Sangam
by
4.1k points