198k views
5 votes
Find (h-g)(x) , (f-h)(x) , g(f(5))

Use the functions f(x)=4x+1 , g(x)=2x^2-6x , and h(x)= -x^2+3x-19


1 Answer

4 votes

Answer:

  • (h-g)(x) = -3x² + 9x - 19
  • (f-h)(x) = x² + x + 20
  • g(f(5)) = 756

Explanation:

f(x) = 4x+1

g(x) = 2x²-6x

h(x) = -x² + 3x - 19

a)

(h-g)(x) = h(x) - g(x)

= -x² + 3x - 19 - (2x²-6x)

= -x² + 3x - 19 - 2x² + 6x

combining like terms: -x² - 2x² = -3x², 3x+6x = 9x

= -3x² + 9x - 19

Therefore,

(h-g)(x) = -3x² + 9x - 19

b)

(f-h)(x) = f(x) - h(x)

= 4x+1 - (-x² + 3x - 19)

= 4x+1 + x² - 3x + 19

combining like terms: 4x- 3x = x, 1+19 = 20

= x² + x + 20

Therefore,

(f-h)(x) = x² + x + 20

c)

g(f(5)) = ?

First determine f(5) by substituting x = 5 in the function f(x)

f(x)=4x+1

f(5) = 4(5) + 1

f(5) = 20+1

f(5) = 21

so

g(f(5)) = g(21)

now

substituting x = 21 in the function g(x)

g(x) = 2x²-6x

g(21) = 2(21)² - 6(21)

g(21) = 882 - 126

g(21) = 756

Therefore,

g(f(5)) = 756

User Grizzly
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories