189k views
8 votes
Evaluate question 3 only ​

Evaluate question 3 only ​-example-1

2 Answers

5 votes

Substitute
x = 4 \sin(y), so that
dx = 4\cos(y)\,dy. Part of the integrand reduces to


16 - x^2 = 16 - (4\sin(y))^2 = 16 - 16 \sin^2(y) = 16 (1 - \sin^2(y)) = 16 \cos^2(y)

Note that we want this substitution to be reversible, so we tacitly assume
-\frac\pi2\le y\le \frac\pi2. Then
\cos(y)\ge0, and


(16-x^2)^(3/2) = 16^(3/2) \left(\cos^2(y)\right)^(3/2) = 64 |\cos(y)|^3 = 64 \cos^3(y)

(since
√(x^2) = |x| for all real
x)

So, the integral we want transforms to


\displaystyle \int (16 - x^2)^(3/2) \, dx = 64 \int \cos^3(y) * 4\cos(y) \, dy = 256 \int \cos^4(y) \, dy

Expand the integrand using the identity


\cos^2(x) = \frac{1+\cos(2x)}2

to write


\displaystyle \int (16 - x^2)^(3/2) \, dx = 256 \int \left(\frac{1 + \cos(2y)}2\right)^2 \, dy \\\\ = 64 \int (1 + 2 \cos(2y) + \cos^2(2y)) \, dy \\\\ = 64 \int (1 + 2 \cos(2y) + \frac{1 + \cos(4y)}2\right) \, dy \\\\ = 32 \int (3 + 4 \cos(2y) + \cos(4y)) \, dy

Now integrate to get


\displaystyle 32 \int (3 + 4 \cos(2y) + \cos(4y)) \, dy = 32 \left(3y + 2 \sin(2y) + \frac14 \sin(4y)\right) + C \\\\ = 96 y + 64 \sin(2y) + 8 \sin(4y) + C

Recall the double angle identity,


\sin(2y) = 2 \sin(y) \cos(y)


\implies \sin(4y) = 2 \sin(2y) \cos(2y) = 4 \sin(y) \cos(y) (\cos^2(y) - \sin^2(y))

By the Pythagorean identity,


\cos(y) = √(1 - \sin^2(y)) = \sqrt{1 - (x^2)/(16)} = \frac{√(16-x^2)}4

Finally, put the result back in terms of
x.


\displaystyle \int (16 - x^2)^(3/2) \, dx \\\\ = 96 \sin^(-1)\left(\frac x4\right) + 128 \frac x4 \frac{√(16-x^2)}4 + 32 \frac x4 \frac{√(16-x^2)}4 \left((16-x^2)/(16) - (x^2)/(16)\right) + C \\\\ = 96 \sin^(-1)\left(\frac x4\right) + 8 x √(16 - x^2) + \frac14 x √(16 - x^2) (8 - x^2) + C \\\\ = \boxed{96 \sin^(-1)\left(\frac x4\right) + \frac14 x √(16 - x^2) \left(40 - x^2\right) + C}

User Luc DUZAN
by
7.3k points
13 votes

Explanation:

(4²-x²)³/²

or,(4+X) (4-X)

User Nikolaj Dam Larsen
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories