215k views
8 votes
Given: NQ is the bisector of ZMNP and ZNMQ

ZNPQ
Prove: Δ MNQ =ΔΡΝΟ
M
N
Q
P

Given: NQ is the bisector of ZMNP and ZNMQ ZNPQ Prove: Δ MNQ =ΔΡΝΟ M N Q P-example-1
User Heiko
by
4.3k points

1 Answer

4 votes

1)
\overline{NQ} is the bisector of
\angle MNP and
\angle NMQ \cong \angle NPQ (given)

2)
\angle MNQ \cong \angle QNP (a bisector splits an angle into two congruent angles)

3)
\overline{NQ} \cong \overline{NQ} (reflexive property)

4)
\triangle MNQ \cong \triangle PNQ (AAS)

User Martin Vrkljan
by
4.4k points