26.5k views
3 votes
I need help asap !!​

I need help asap !!​-example-1

1 Answer

4 votes

Answer:

Solving the expression
\frac{\sqrt[3]{7} }{\sqrt[5]{7} } we get
\mathbf{7^{(2)/(15)}}

Option D is correct option.

Explanation:

We need to solve the expression:
\frac{\sqrt[3]{7} }{\sqrt[5]{7} }

We know that


\sqrt[3]{x}=x^{(1)/(3) and
\sqrt[5]{x}=x^{(1)/(5)

Using above rule:


\frac{\sqrt[3]{7} }{\sqrt[5]{7} }\\=\frac{7^{(1)/(3)}}{7^{(1)/(5)}}

Now, we know the exponent rule if bases are same and divided then exponents are subtracted i.e:
(a^m)/(a^n)=a^(m-n)

Using the exponent rule


=7^{(1)/(3)-(1)/(5) }\\Simplifying\:exponents\\=7^{(5-3)/(15)}\\=7^{(1*5-1*3)/(15)}\\=7^{(2)/(15)}

So, solving the expression
\frac{\sqrt[3]{7} }{\sqrt[5]{7} } we get
\mathbf{7^{(2)/(15)}}

Option D is correct option.

User Rfkortekaas
by
8.5k points