201k views
1 vote
An object is placed in front of a convex lens of a length 10cm. What is the nature of the image formed if the object distance is 15 cm?​

1 Answer

5 votes


{\mathfrak{\underline{\purple{\:\:\: Given:-\:\:\:}}}} \\ \\


\:\:\:\:\bullet\:\:\:\sf{Focal\:length=10\:cm}


\:\:\:\:\bullet\:\:\:\sf{Object \ distance = -15\:cm}


\\


{\mathfrak{\underline{\purple{\:\:\:To \:Find:-\:\:\:}}}} \\ \\


\:\:\:\:\bullet\:\:\:\sf{Nature \: of \:the\:image}


\\


{\mathfrak{\underline{\purple{\:\:\: Solution:-\:\:\:}}}} \\ \\

By using formula of Lens


\\


\dashrightarrow\:\: {\boxed{\sf{(1)/(u) + (1)/(v) = (1)/(f)}}}


\\


\dashrightarrow\:\: \sf{(1)/(v)-(1)/(-15)=(1)/(10)}


\\


\dashrightarrow\:\: \sf{(1)/(v)+(1)/(15)=(1)/(10)}


\\


\dashrightarrow\:\: \sf{(1)/(v) = (1)/(10) - (1)/(15)}


\\


\dashrightarrow\:\: \sf{(1)/(v) = (1)/(30)}


\\


\dashrightarrow\:\: \sf{ v = 30 \ cm}


\\

Now, Finding the magnification


\\


\dashrightarrow\:\: \sf{ m = (-30)/(-15)}


\\


\dashrightarrow\:\: \sf{m = -2}


\\

Hence,
\\


\:\:\:\:\star\:\:\:\sf{Image \ distance = 30 \ cm}


\:\:\:\:\star\:\:\:\sf{Nature = Real \ \& \ inverted}

User Toland Hon
by
8.5k points