Hello! :)
![\large\boxed{\frac{-e^{(3)/(x)} (3 + 2x )}{x^(4)}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/dz6m1oa1717cupy7iyhokwjttim5sgrxdu.png)
Find the derivative using the quotient rule:
![(f(x))/(g(x)) = (g(x) * f'(x) - f(x) * g'(x))/((g(x))^(2))](https://img.qammunity.org/2021/formulas/mathematics/high-school/nw5xecl1z02g7ofbjc6yqsdv9qie6qh6ub.png)
In this instance:
![f(x) = e^{(3)/(x) }\\\\g(x) = x^(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/p7ka1k33ri8120wyqtr3noitae1acl8i1w.png)
Use the following properties to find the derivative of f(x) and g(x):
![e^(u) = u' * e^(u)\\\\x^(n) = nx^(n-1)](https://img.qammunity.org/2021/formulas/mathematics/high-school/q5ssrwl45uq59zme6ljfq4iwormo1bx1j4.png)
Use the quotient rule:
![\frac{x^(2) * (e^{(3)/(x)} * (-3x^(-2))) - e^{(3)/(x)} * 2x }{(x^(2) )^(2)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/q2tiag3bv1y2u7100uixthmmvnem3z293w.png)
Simplify the numerator:
![\frac{(e^{(3)/(x)} * (-3)) - e^{(3)/(x)} * 2x }{(x^(2) )^(2)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/7cuv0vrudx642vjyqb3mbvmialrr1hib9g.png)
Factor out
![e^{(3)/(x)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/7qlix9s4e1kxwmsf5huhfk84stoczffrv7.png)
![\frac{e^{(3)/(x)} (-3 - 2x )}{x^(4)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/fc0myayf6u8uei7cppq94qi4rfwqgc4un8.png)
Factor out -1 from the numerator:
![\frac{-e^{(3)/(x)} (3 + 2x )}{x^(4)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/jwzprh3rczf1hbideud0ik8fbnji2sm3xa.png)
And we're done! Thanks for posting the question to my 1000th answer!