Answer:
and
![Width = (3)/(2)](https://img.qammunity.org/2021/formulas/engineering/college/kqrjascennl169naiaqa9xzhswj65yl18c.png)
Step-by-step explanation:
Given
![Volume = 9m^3](https://img.qammunity.org/2021/formulas/engineering/college/pyhtndeyfkvk5hvgjirxyovnzoi1z9mt55.png)
Represent the height as h, the length as l and the width as w.
From the question:
![Length = 2 * Width](https://img.qammunity.org/2021/formulas/mathematics/college/ey42sfj4u58rccne1ka6y45288r319ig3q.png)
![l = 2w](https://img.qammunity.org/2021/formulas/mathematics/high-school/oz9jj5t585sgtndz6kb4jo5u8f2n28fy88.png)
Volume of a box is calculated as:
![V = l*w*h](https://img.qammunity.org/2021/formulas/mathematics/college/c3v7cl9fb6w8bzpltjpq80tnrr80qy06ox.png)
This gives:
![V = 2w *w*h](https://img.qammunity.org/2021/formulas/engineering/college/apa4gc0zp890a8ykcyh6txuf27cq3q5lxt.png)
![V = 2w^2h](https://img.qammunity.org/2021/formulas/engineering/college/x7fhm7wvgxu4i7agbu7730gno6n5n8e5k1.png)
Substitute 9 for V
![9 = 2w^2h](https://img.qammunity.org/2021/formulas/engineering/college/bfffksl6ibkwnu93kq4ci7n0bl7v2143yc.png)
Make h the subject:
![h = (9)/(2w^2)](https://img.qammunity.org/2021/formulas/engineering/college/3q5xrjqwqju6fxuvjni6h29z95ulkkq2yk.png)
The surface area is calculated as:
![A = 2(lw + lh + hw)](https://img.qammunity.org/2021/formulas/mathematics/college/glwvd5lbspdkztmdgnzc42zhuieah2xf8h.png)
Recall that:
![l = 2w](https://img.qammunity.org/2021/formulas/mathematics/high-school/oz9jj5t585sgtndz6kb4jo5u8f2n28fy88.png)
![A = 2(2w*w + 2w*h + hw)](https://img.qammunity.org/2021/formulas/engineering/college/7fii2jangqxp50w3q4uwi9l5ia8or6839g.png)
![A = 2(2w^2 + 2wh + hw)](https://img.qammunity.org/2021/formulas/engineering/college/q22pw1b64v7969x18uyiedzjta068j89wv.png)
![A = 2(2w^2 + 3wh)](https://img.qammunity.org/2021/formulas/engineering/college/f3618251ndywl7mcckmm06jjpym5n9uh0j.png)
![A = 4w^2 + 6wh](https://img.qammunity.org/2021/formulas/engineering/college/3125zug3dazvzmcj50tf3leu1u45yeawzz.png)
Recall that:
![h = (9)/(2w^2)](https://img.qammunity.org/2021/formulas/engineering/college/3q5xrjqwqju6fxuvjni6h29z95ulkkq2yk.png)
So:
![A = 4w^2 + 6w * (9)/(2w^2)](https://img.qammunity.org/2021/formulas/engineering/college/miu3iz8hzdhsgy7tm5wjltb6uqwk8kqds3.png)
![A = 4w^2 + 6* (9)/(2w)](https://img.qammunity.org/2021/formulas/engineering/college/koknoea5sercjce9lg968w8xujppfzjmug.png)
![A = 4w^2 + (6* 9)/(2w)](https://img.qammunity.org/2021/formulas/engineering/college/vr8tz8wnfv9bje0qtsglxusrhzo2c6vepk.png)
![A = 4w^2 + (3* 9)/(w)](https://img.qammunity.org/2021/formulas/engineering/college/4htocr3fbx53ja7roa9qb6fwiqi45r1gt5.png)
![A = 4w^2 + (27)/(w)](https://img.qammunity.org/2021/formulas/engineering/college/2gbseobu750bschzutshopiu8ae901okbj.png)
To minimize the surface area, we have to differentiate with respect to w
![A' = 8w - 27w^(-2)](https://img.qammunity.org/2021/formulas/engineering/college/tocyedkyldrzjur0c0edtpj4nrp25skrp6.png)
Set A' to 0
![0 = 8w - 27w^(-2)](https://img.qammunity.org/2021/formulas/engineering/college/xb4g5cxbwci4h5wxyiz9ia9m5kls8yfqdh.png)
Add
to both sides
![27w^(-2) = 8w](https://img.qammunity.org/2021/formulas/engineering/college/abh4qtyxydgmpd1xp9p6h7bf9dep3ts9wr.png)
Multiply both sides by
![w^2](https://img.qammunity.org/2021/formulas/mathematics/college/871h2n8w6rpjbs1qg4qqi107ad1xd2s7oy.png)
![27w^(-2)*w^2 = 8w*w^2](https://img.qammunity.org/2021/formulas/engineering/college/75isoizalirseefpsxj4aifno1duyn3aq1.png)
![27 = 8w^3](https://img.qammunity.org/2021/formulas/engineering/college/munjw0kejrd51417zohgaaq6fwrongdu17.png)
Make
the subject
![w^3 = (27)/(8)](https://img.qammunity.org/2021/formulas/engineering/college/gbn6fn793d3l2ltsflgb472v2xntowk0fm.png)
Solve for w
![w = \sqrt[3]{(27)/(8)}](https://img.qammunity.org/2021/formulas/engineering/college/jvi5b13s4sr6l69tlfpy8b7loqj2t6znti.png)
![w = (3)/(2)](https://img.qammunity.org/2021/formulas/engineering/college/5kzmuwfq11wv8ggpcweawym4vzrzo28s4p.png)
Recall that :
and
![l = 2w](https://img.qammunity.org/2021/formulas/mathematics/high-school/oz9jj5t585sgtndz6kb4jo5u8f2n28fy88.png)
![h = (9)/(2 * (3)/(2)^2)](https://img.qammunity.org/2021/formulas/engineering/college/jbynpnplv4ms6lbub13sdmrprpev66swol.png)
![h = (9)/(2 * (9)/(4))](https://img.qammunity.org/2021/formulas/engineering/college/ccvzuot17g16c8f9rikkyy2coblkyqnud3.png)
![h = (9)/((9)/(2))](https://img.qammunity.org/2021/formulas/engineering/college/x2rps2a0op0zwea74xlebjvnafknw4ny6x.png)
![h = 9/(9)/(2)](https://img.qammunity.org/2021/formulas/engineering/college/gn4isa8bpbqhj0o2to08t1fu57inva6qqa.png)
![h = 9*(2)/(9)](https://img.qammunity.org/2021/formulas/engineering/college/4f2aijlnkifce8kakwv659e77xqezi5agf.png)
![h= 2](https://img.qammunity.org/2021/formulas/engineering/college/wke05spvyzpqhh6zyeekiuamxo29z5tzuy.png)
![l = 2w](https://img.qammunity.org/2021/formulas/mathematics/high-school/oz9jj5t585sgtndz6kb4jo5u8f2n28fy88.png)
![l = 2 * (3)/(2)](https://img.qammunity.org/2021/formulas/engineering/college/269qpx1ki3czcg84rofx0ti9503tzf557m.png)
![l = 3](https://img.qammunity.org/2021/formulas/mathematics/high-school/dai1nbwk0w15kks659sxdjvurjkdf5wyt1.png)
Hence, the dimension that minimizes the surface area is:
and
![Width = (3)/(2)](https://img.qammunity.org/2021/formulas/engineering/college/kqrjascennl169naiaqa9xzhswj65yl18c.png)