112k views
16 votes

\{ \frac { ( \sqrt { 3 } ) * 3 ^ { - 2 } } { ( \sqrt { 5 } ) ^ { 2 } } \} ^ { \frac { 1 } { 2 } }solve this equation



User Chrise
by
9.0k points

1 Answer

4 votes

Answer:

Explanation:

Exponent law:


\sf \bf a^m * a^n = a^(m+n)\\\\ (a^m)^n = a^(m*n)


\sf a^(-m)=(1)/(a^m)

First convert radical form to exponent form and then apply exponent law.


\sf √(3)=3^{(1)/(2)}\\\\√(5)=5^{(1)/(2)}


\sf \left(((√(3)*3^(-2))/((√(5))^2)\right)^{(1)/(2)}= \left(\frac{3^{(1)/(2)}*3^(-2)}{(5^{(1)/(2)})^2} \right )^{(1)/(2)}


= \left(\frac{3^{(1)/(2)-2}}{5^{(1)/(2)*2}}\right)^{(1)/(2)}\\\\=\left(\frac{3^{(1-4)/(2)}}{5}\right)^{(1)/(2)}\\\\=\left(\frac{3^{(-3)/(2)}}{5}\right)^{(1)/(2)}\\\\=\frac{3^{(-3)/(2)*{(1)/(2)}}}{5^{(1)/(2)}}\\\\ =\frac{3^{{(-3)/(4)}}}{5^{(1)/(2)}}

User CuriousPan
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories