112k views
16 votes

\{ \frac { ( \sqrt { 3 } ) * 3 ^ { - 2 } } { ( \sqrt { 5 } ) ^ { 2 } } \} ^ { \frac { 1 } { 2 } }solve this equation



User Chrise
by
4.2k points

1 Answer

4 votes

Answer:

Explanation:

Exponent law:


\sf \bf a^m * a^n = a^(m+n)\\\\ (a^m)^n = a^(m*n)


\sf a^(-m)=(1)/(a^m)

First convert radical form to exponent form and then apply exponent law.


\sf √(3)=3^{(1)/(2)}\\\\√(5)=5^{(1)/(2)}


\sf \left(((√(3)*3^(-2))/((√(5))^2)\right)^{(1)/(2)}= \left(\frac{3^{(1)/(2)}*3^(-2)}{(5^{(1)/(2)})^2} \right )^{(1)/(2)}


= \left(\frac{3^{(1)/(2)-2}}{5^{(1)/(2)*2}}\right)^{(1)/(2)}\\\\=\left(\frac{3^{(1-4)/(2)}}{5}\right)^{(1)/(2)}\\\\=\left(\frac{3^{(-3)/(2)}}{5}\right)^{(1)/(2)}\\\\=\frac{3^{(-3)/(2)*{(1)/(2)}}}{5^{(1)/(2)}}\\\\ =\frac{3^{{(-3)/(4)}}}{5^{(1)/(2)}}

User CuriousPan
by
4.1k points