9.6k views
4 votes
Prove the following integration formula:


\displaystyle \int e^(au)\sin(bu)\, du=(e^(au))/(a^2+b^2)(a\sin(bu)-b\cos(bu))+C

User Rhellem
by
7.5k points

2 Answers

4 votes

Answer:

See Explanation.

General Formulas and Concepts:

Pre-Algebra

  • Distributive Property
  • Equality Properties

Algebra I

  • Combining Like Terms
  • Factoring

Calculus

  • Derivative 1:
    (d)/(dx) [e^u]=u'e^u
  • Integration Constant C
  • Integral 1:
    \int {e^x} \, dx = e^x + C
  • Integral 2:
    \int {sin(x)} \, dx = -cos(x) + C
  • Integral 3:
    \int {cos(x)} \, dx = sin(x) + C
  • Integral Rule 1:
    \int {cf(x)} \, dx = c \int {f(x)} \, dx
  • Integration by Parts:
    \int {u} \, dv = uv - \int {v} \, du
  • [IBP] LIPET: Logs, Inverses, Polynomials, Exponents, Trig

Explanation:

Step 1: Define Integral


\int {e^(au)sin(bu)} \, du

Step 2: Identify Variables Pt. 1

Using LIPET, we determine the variables for IBP.

Use Int Rules 2 + 3.


u = e^(au)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = sin(bu)du\\du = ae^(au)du \ \ \ \ \ \ \ \ \ v = (-cos(bu))/(b)

Step 3: Integrate Pt. 1

  1. Integrate [IBP]:
    \int {e^(au)sin(bu)} \, du = (-e^(au)cos(bu))/(b) - \int ({ae^(au) \cdot (-cos(bu))/(b) }) \, du
  2. Integrate [Int Rule 1]:
    \int {e^(au)sin(bu)} \, du = (-e^(au)cos(bu))/(b) + (a)/(b) \int ({e^(au)cos(bu)}) \, du

Step 4: Identify Variables Pt. 2

Using LIPET, we determine the variables for the 2nd IBP.

Use Int Rules 2 + 3.


u = e^(au)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = cos(bu)du\\du = ae^(au)du \ \ \ \ \ \ \ \ \ v = (sin(bu))/(b)

Step 5: Integrate Pt. 2

  1. Integrate [IBP]:
    \int {e^(au)cos(bu)} \, du = (e^(au)sin(bu))/(b) - \int ({ae^(au) \cdot (sin(bu))/(b) }) \, du
  2. Integrate [Int Rule 1]:
    \int {e^(au)cos(bu)} \, du = (e^(au)sin(bu))/(b) - (a)/(b) \int ({e^(au) sin(bu)}) \, du

Step 6: Integrate Pt. 3

  1. Integrate [Alg - Back substitute]:
    \int {e^(au)sin(bu)} \, du = (-e^(au)cos(bu))/(b) + (a)/(b) [(e^(au)sin(bu))/(b) - (a)/(b) \int ({e^(au) sin(bu)}) \, du]
  2. [Integral - Alg] Distribute Brackets:
    \int {e^(au)sin(bu)} \, du = (-e^(au)cos(bu))/(b) + (ae^(au)sin(bu))/(b^2) - (a^2)/(b^2) \int ({e^(au) sin(bu)}) \, du
  3. [Integral - Alg] Isolate Original Terms:
    \int {e^(au)sin(bu)} \, du + (a^2)/(b^2) \int ({e^(au) sin(bu)}) \, du= (-e^(au)cos(bu))/(b) + (ae^(au)sin(bu))/(b^2)
  4. [Integral - Alg] Rewrite:
    ((a^2)/(b^2) +1)\int {e^(au)sin(bu)} \, du = (-e^(au)cos(bu))/(b) + (ae^(au)sin(bu))/(b^2)
  5. [Integral - Alg] Isolate Original:
    \int {e^(au)sin(bu)} \, du = ((-e^(au)cos(bu))/(b) + (ae^(au)sin(bu))/(b^2))/((a^2)/(b^2) +1)
  6. [Integral - Alg] Rewrite Fraction:
    \int {e^(au)sin(bu)} \, du = ((-be^(au)cos(bu))/(b^2) + (ae^(au)sin(bu))/(b^2))/((a^2)/(b^2) +(b^2)/(b^2) )
  7. [Integral - Alg] Combine Like Terms:
    \int {e^(au)sin(bu)} \, du = ((ae^(au)sin(bu)-be^(au)cos(bu))/(b^2) )/((a^2+b^2)/(b^2) )
  8. [Integral - Alg] Divide:
    \int {e^(au)sin(bu)} \, du = (ae^(au)sin(bu) - be^(au)cos(bu))/(b^2) \cdot (b^2)/(a^2 + b^2)
  9. [Integral - Alg] Multiply:
    \int {e^(au)sin(bu)} \, du = (1)/(a^2+b^2) [ae^(au)sin(bu) - be^(au)cos(bu)]
  10. [Integral - Alg] Factor:
    \int {e^(au)sin(bu)} \, du = (e^(au))/(a^2+b^2) [asin(bu) - bcos(bu)]
  11. [Integral] Integration Constant:
    \int {e^(au)sin(bu)} \, du = (e^(au))/(a^2+b^2) [asin(bu) - bcos(bu)] + C

And we have proved the integration formula!

User Artemis
by
8.8k points
5 votes

Prove:
\displaystyle \int e^a^u sin(bu)\ du = (e^a^u)/(a^2+b^2) (a \ sin(bu) - b \ cos(bu)) + C

Integration by parts formula:
\displaystyle \int udv = uv - \int vdu

Find u, du, v, and dv for this function:
\displaystyle \int e^a^u sin(bu)


  • \displaystyle u =e^a^u \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ v = -(cos(bu))/(b) \\ du=ae^a^u \ du \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = sin(bu) \ du

Plug these values into the IBP formula.


  • \displaystyle \int e^a^u sin(bu) \ du = e^a^u \cdot (-cos(bu))/(b) - \int -(cos(bu))/(b) \cdot ae^a^u \ du

Multiply and simplify the factors. Factor the negative out of the integral.


  • \displaystyle \int e^a^u sin(bu) \ du = -(e^a^u cos(bu))/(b) +\int (a \ cos(bu) \ e^a^u)/(b) \ du

Factor out a/b from the integral.


  • \displaystyle \int e^a^u sin(bu) \ du = -(e^a^u cos(bu))/(b) + (a)/(b) \int cos(bu) \ e^a^u \ du

Now we are going to apply IBP to the function:
\displaystyle \int cos(bu) \ e^a^u . Find u, du, v, and dv for this function.


  • \displaystyle u =e^a^u \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ v = (sin(bu))/(b) \\ du=ae^a^u \ du \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = cos(bu) \ du

Plug these values into the IBP formula.


  • \displaystyle \int e^a^u cos(bu) \ du = e^a^u \cdot (sin(bu))/(b) - \int (sin(bu))/(b) \cdot ae^a^u \ du

Multiply and simplify the factors.


  • \displaystyle \int e^a^u cos(bu) \ du = (e^a^u \ sin(bu))/(b) - \int (a \ sin(bu)\ e^a^u)/(b) \ du

Factor out a/b from the integral.


  • \displaystyle \int e^a^u cos(bu) \ du = (e^a^u \ sin(bu))/(b) - (a)/(b) \int sin(bu)\ e^a^u} \ du

Notice that we have the same integral we started with. Let's plug this integral into the original IBP we did.


  • \displaystyle \int e^a^u sin(bu) \ du = -(e^a^u cos(bu))/(b) + (a)/(b) \big{[ }(e^a^u sin(bu))/(b) - (a)/(b) \int sin(bu) \ e^a^u \ du \big{]}}

Distribute a/b inside the parentheses.


  • \displaystyle \int e^a^u sin(bu) \ du = -(e^a^u cos(bu))/(b) + (a \ e^a^u sin(bu))/(b^2) - (a^2)/(b^2) \int sin(bu) \ e^a^u \ du

Factor 1/b out of the right side of the equation.


  • \displaystyle \int e^a^u sin(bu) \ du = (1)/(b)\big{[} -e^a^u cos(bu)+ a \big{(}(e^a^u sin(bu))/(b) \big{)} - (a^2)/(b) \int sin(bu) \ e^a^u \ du \big{]}

Multiply both sides by b to get rid of 1/b.


  • \displaystyle b \int e^a^u sin(bu) \ du = -e^a^u cos(bu)+ a \big{(}(e^a^u sin(bu))/(b) \big{)} - (a^2)/(b) \int sin(bu) \ e^a^u \ du

Add the integral to both sides of the equation.


  • \displaystyle b \int e^a^u sin(bu) \ du + (a^2)/(b) \int sin(bu) \ e^a^u \ du= -e^a^u cos(bu)+ a \big{(}(e^a^u sin(bu))/(b) \big{)}

Factor the integral on the left side.


  • \displaystyle \int e^a^u sin(bu) \ du \ \big{(} b + (a^2)/(b) \big{)}= -e^a^u cos(bu)+ a \big{(}(e^a^u sin(bu))/(b) \big{)}


\displaystyle \big{(}b+(a^2)/(b) \big{)} = (b^2+a^2)/(b), so we can multiply both sides of the equation by
\displaystyle (b)/(a^2+b^2).


  • \displaystyle \int e^a^u sin(bu) \ du = -e^a^u cos(bu)+ a \big{(}(e^a^u sin(bu))/(b) \big{)} \big{(} (b)/(a^2+b^2) \big{)}

Simplify the equation before multiplying everything by
\displaystyle (b)/(a^2+b^2).


  • \displaystyle \int e^a^u sin(bu) \ du = \big{(}(-e^a^u cos(bu) \ b + a \ e^a^u sin(bu))/(b) \big{)} \big{(} (b)/(a^2+b^2) \big{)}

Multiply the two factors together. Notice that the two b's in the denominator and numerator, respectively, cancel out. We are left with:


  • \displaystyle \int e^a^u sin(bu) \ du = \big{(}(-e^a^u cos(bu) \ b + a \ e^a^u sin(bu))/(a^2+b^2) \big{)}

Factor
\displaystyle e^a^u from the numerator.


  • \displaystyle \int e^a^u sin(bu) \ du = \big{(}(e^a^u( -b \ cos(bu) \ + a \ sin(bu))/(a^2+b^2) \big{)}

Split the numerator and denominator to make it appear the same as the original question.


  • \displaystyle \int e^a^u sin(bu) \ du = (e^a^u)/(a^2+b^2) \big{(} a \ sin(bu) - b \ cos(bu) \big{)}

Since we are taking the integral of something, we can add a +C at the end to complete the problem.


  • \displaystyle \int e^a^u sin(bu) \ du = (e^a^u)/(a^2+b^2) \big{(} a \ sin(bu) - b \ cos(bu) \big{)} + C

This is equivalent to the proof that we are given, therefore, we proved the integral correctly.

User Chrisblo
by
8.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.