51.7k views
3 votes
Pleaseeeee answer correctly !!!!!!!!!!!!!!! Will mark Brianliest !!!!!!!!!!!!!!!!!

Pleaseeeee answer correctly !!!!!!!!!!!!!!! Will mark Brianliest !!!!!!!!!!!!!!!!!-example-1
User Crystel
by
4.5k points

2 Answers

0 votes

Answer:

let the third side be x

Using pythagoras theorem we get,

(58)^2 = (42)^2 + (x)^2

3364=1764+x^2

x^2=3364-1764

x^2= 1600

x=√(1,600)

x=40

User Meim
by
5.1k points
5 votes

Answer :


\pink{\sf Third \: side \: of \: the \: triangle = 40}

Solution :

As, the given triangle is a right angled triangle,

Hence, We can use the Pythagoras' Theorem,


\star\:{\boxed{\sf{\pink {H^(2) = B^(2) + P^(2)}}}}

Here,

  • H = Hypotenuse of triangle
  • B = Base of triangle
  • P = Perpendicular of triangle

In given triangle,

  • Base = 42
  • Hypotenuse = 58
  • Perpendicular = ?

Now, by Pythagoras' theorem,


\star\:{\boxed{\sf{\pink {H^(2) = B^(2) + P^(2)}}}}


\sf : \implies (58)^(2) = (42)^(2) + P^(2)


\sf : \implies 58 * 58 = 42 * 42 + P^(2)


\sf : \implies 3364 = 1764 + P^(2)


\sf : \implies P^(2) = 3364 - 1764


\sf : \implies P^(2) = 1600

By squaring both sides :


\sf \sqrt{P^(2)} = √(1600)


\sf : \implies P^(2) = √(1600)


\sf : \implies P^(2) = \sqrt{(40)^(2)}


\sf : \implies P^(2) = 40


\pink{\sf \therefore \: Third \: side \: of \: the \: triangle \: is \: 40}

━━━━━━━━━━━━━━━━━━━━━

User Mahender Singh
by
5.1k points