171k views
0 votes
Compute the surface area of the portion of the sphere with center the origin and radius 4 that lies inside the cylinder x^2+y^2=12

User Nick Bray
by
8.3k points

1 Answer

6 votes

Answer:

16π

Explanation:

Given that:

The sphere of the radius =
x^2 + y^2 +z^2 = 4^2


z^2 = 16 -x^2 -y^2


z = √(16-x^2-y^2)

The partial derivatives of
Z_x = (-2x)/(2 √(16-x^2 -y^2))


Z_x = (-x)/(√(16-x^2 -y^2))

Similarly;


Z_y = (-y)/(√(16-x^2 -y^2))


dS = √(1 + Z_x^2 +Z_y^2) \ \ . dA


=\sqrt{1 + (x^2)/(16-x^2-y^2) + (y^2)/(16-x^2-y^2) }\ \ .dA


=\sqrt{ (16)/(16-x^2-y^2) }\ \ .dA


=(4)/(√( 16-x^2-y^2) )\ \ .dA

Now; the region R = x² + y² = 12

Let;

x = rcosθ = x; x varies from 0 to 2π

y = rsinθ = y; y varies from 0 to
√(12)

dA = rdrdθ

The surface area
S = \int \limits _R \int \ dS


= \int \limits _R\int \ (4)/(√( 16-x^2 -y^2) ) \ dA


= \int \limits^(2 \pi)_(0) } \int^(√(12))_(0) (4)/(√(16-r^2)) \ \ rdrd \theta


= 2 \pi \int^(√(12))_(0) \ (4r)/(√(16-r^2))\ dr


= 2 \pi * 4 \Bigg [ (√(16-r^2))/((1)/(2)(-2)) \Bigg]^(√(12))_(0)


= 8\pi ( - √(4) + √(16))

= 8π ( -2 + 4)

= 8π(2)

= 16π

User Paulo Fidalgo
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories