171k views
0 votes
Compute the surface area of the portion of the sphere with center the origin and radius 4 that lies inside the cylinder x^2+y^2=12

User Nick Bray
by
4.9k points

1 Answer

6 votes

Answer:

16π

Explanation:

Given that:

The sphere of the radius =
x^2 + y^2 +z^2 = 4^2


z^2 = 16 -x^2 -y^2


z = √(16-x^2-y^2)

The partial derivatives of
Z_x = (-2x)/(2 √(16-x^2 -y^2))


Z_x = (-x)/(√(16-x^2 -y^2))

Similarly;


Z_y = (-y)/(√(16-x^2 -y^2))


dS = √(1 + Z_x^2 +Z_y^2) \ \ . dA


=\sqrt{1 + (x^2)/(16-x^2-y^2) + (y^2)/(16-x^2-y^2) }\ \ .dA


=\sqrt{ (16)/(16-x^2-y^2) }\ \ .dA


=(4)/(√( 16-x^2-y^2) )\ \ .dA

Now; the region R = x² + y² = 12

Let;

x = rcosθ = x; x varies from 0 to 2π

y = rsinθ = y; y varies from 0 to
√(12)

dA = rdrdθ

The surface area
S = \int \limits _R \int \ dS


= \int \limits _R\int \ (4)/(√( 16-x^2 -y^2) ) \ dA


= \int \limits^(2 \pi)_(0) } \int^(√(12))_(0) (4)/(√(16-r^2)) \ \ rdrd \theta


= 2 \pi \int^(√(12))_(0) \ (4r)/(√(16-r^2))\ dr


= 2 \pi * 4 \Bigg [ (√(16-r^2))/((1)/(2)(-2)) \Bigg]^(√(12))_(0)


= 8\pi ( - √(4) + √(16))

= 8π ( -2 + 4)

= 8π(2)

= 16π

User Paulo Fidalgo
by
5.3k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.