Answer:
16π
Explanation:
Given that:
The sphere of the radius =
![x^2 + y^2 +z^2 = 4^2](https://img.qammunity.org/2021/formulas/mathematics/college/l0xdxiyi27itri0sxx5bru4tyrosof9ehw.png)
![z^2 = 16 -x^2 -y^2](https://img.qammunity.org/2021/formulas/mathematics/college/loslnqkccukx1ahq6pkdypprjlapo5to8k.png)
![z = √(16-x^2-y^2)](https://img.qammunity.org/2021/formulas/mathematics/college/48dvk0qefvthnxm1fn5t9iz4m0aroqr4r3.png)
The partial derivatives of
![Z_x = (-2x)/(2 √(16-x^2 -y^2))](https://img.qammunity.org/2021/formulas/mathematics/college/647vpk8k9ppner7rd4nmokdg28zomo276m.png)
![Z_x = (-x)/(√(16-x^2 -y^2))](https://img.qammunity.org/2021/formulas/mathematics/college/222awx9xrhqsb1llip35cbh1ljb43mds7m.png)
Similarly;
![Z_y = (-y)/(√(16-x^2 -y^2))](https://img.qammunity.org/2021/formulas/mathematics/college/banmdpvd39xwmgrddnikm78spcirx1xfw8.png)
∴
![dS = √(1 + Z_x^2 +Z_y^2) \ \ . dA](https://img.qammunity.org/2021/formulas/mathematics/college/sxp4xv3ku4atr6kx1n2egdwuq6zr46wery.png)
![=\sqrt{1 + (x^2)/(16-x^2-y^2) + (y^2)/(16-x^2-y^2) }\ \ .dA](https://img.qammunity.org/2021/formulas/mathematics/college/rurtslejiz6gdi4osvtp9cojmltj754dn6.png)
![=\sqrt{ (16)/(16-x^2-y^2) }\ \ .dA](https://img.qammunity.org/2021/formulas/mathematics/college/2nggna6a5qas5jgeqnduzw25o9dgioxxf7.png)
![=(4)/(√( 16-x^2-y^2) )\ \ .dA](https://img.qammunity.org/2021/formulas/mathematics/college/kmco665em2oq7egh8rwcd4luv0u1qjboxv.png)
Now; the region R = x² + y² = 12
Let;
x = rcosθ = x; x varies from 0 to 2π
y = rsinθ = y; y varies from 0 to
![√(12)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/tyf9h8rzk1b8rlouv1wdfb7y0pa94201s4.png)
dA = rdrdθ
∴
The surface area
![S = \int \limits _R \int \ dS](https://img.qammunity.org/2021/formulas/mathematics/college/vo03ef4vn6wcvxr0lleya6jsxx4zve9rjk.png)
![= \int \limits _R\int \ (4)/(√( 16-x^2 -y^2) ) \ dA](https://img.qammunity.org/2021/formulas/mathematics/college/bm87qg8ko0ukg3wx5gu5025ffmbx7ubick.png)
![= \int \limits^(2 \pi)_(0) } \int^(√(12))_(0) (4)/(√(16-r^2)) \ \ rdrd \theta](https://img.qammunity.org/2021/formulas/mathematics/college/54fkcqbtse7myblt1gryf94wtzk59bs3ci.png)
![= 2 \pi \int^(√(12))_(0) \ (4r)/(√(16-r^2))\ dr](https://img.qammunity.org/2021/formulas/mathematics/college/ebrxklwfe61wqez7l6jp4cfzx5avh9mo2g.png)
![= 2 \pi * 4 \Bigg [ (√(16-r^2))/((1)/(2)(-2)) \Bigg]^(√(12))_(0)](https://img.qammunity.org/2021/formulas/mathematics/college/m12mo191butks7f1no8zlpgmh6o4nlugof.png)
![= 8\pi ( - √(4) + √(16))](https://img.qammunity.org/2021/formulas/mathematics/college/9dwtes8ejj756lgn70w9wiv9zot5hh65ns.png)
= 8π ( -2 + 4)
= 8π(2)
= 16π