Answer:
T = 708.81 N
Step-by-step explanation:
Given that,
Length of a steel wire in a piano, l =0.54 m
Mass,
![m=4.8* 10^(-3)\ kg](https://img.qammunity.org/2021/formulas/physics/college/6gpphpuonc2d2eo2msc8ldkq6aueingkal.png)
We need to find the tension must this wire be stretched so that the fundamental vibration corresponds to middle C, fc = 261.6 Hz
The equation for fundamental frequency is given by :
![f=(1)/(2l)* \sqrt{(T)/(\mu)} \\\\f=(1)/(2l)* \sqrt{(T)/((m)/(l))} \\\\261.6=(1)/(2* 0.54)* \sqrt{(T)/((4.8* 10^(-3))/(0.54))} \\\\261.6* 2* 0.54=\sqrt{(T)/((4.8* 10^(-3))/(0.54))}\\\\282.528=\sqrt{(T)/(0.00888)} \\\\(282.528)^2=(T)/(0.00888)\\\\T=708.81\ N](https://img.qammunity.org/2021/formulas/physics/college/iy3ntefkr8e7mg5w7gk38uz39oy61v23f9.png)
So, the required tension in the wire is 708.81 N.