Given:
The length of a rectangle is one unit more than its width.
Area of rectangle = 56 units
To find:
The dimensions of the rectangle.
Solution:
Let, width of the rectangle be x.
Then, length of the rectangle = x+1
Area of a rectangle is
![Area=length* width](https://img.qammunity.org/2021/formulas/mathematics/middle-school/78fnimkfupsqo879gw68zqxdfzds49yqx5.png)
![56=(x+1)* x](https://img.qammunity.org/2021/formulas/mathematics/high-school/88cjk57nu96xzpo26yaf6tlplq9a6mh7sq.png)
![56=x^2+x](https://img.qammunity.org/2021/formulas/mathematics/high-school/5g231lep8v85xq7su33aan3s8wahhb2mju.png)
![0=x^2+x-56](https://img.qammunity.org/2021/formulas/mathematics/high-school/vagqqeniie5e50lajjivd54nldbyq9gfs0.png)
By splitting the middle term, we get
![x^2+8x-7x-56=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/dx0k5m0o374yngmnza0yesmrm4wsnmn52j.png)
![x(x+8)-7(x+8)=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/ewhbm9ncncvqif309yuuh01q2jluft0kdj.png)
![(x-7)(x+8)=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/s59kr6mvv3jbkvr0eq1r4z1mj7bwejc4ht.png)
Using zero product property, we get
and
![x+8=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/6dnzl4w3purlc6c66ztdc2l7bi0ltoqdcs.png)
and
![x=-8](https://img.qammunity.org/2021/formulas/mathematics/middle-school/pyvmnelf2bto4vs11py8leasmmmtzzo9xy.png)
Width cannot be negative. So, x=7.
Now,
Width = 7 units
Length = 7+1
= 8 units
Therefore, the length of the rectangle is 8 units and width is 7 units.