Answer:
![P(x)=x^3+12x^2+45x+50](https://img.qammunity.org/2021/formulas/mathematics/college/wb0ayrlaix11w7rljluvsn6w8i999hkios.png)
Explanation:
Roots of a polynomial
If we know the roots of a polynomial, say x1,x2,x3,...,xn, we can construct the polynomial using the formula
![P(x)=a(x-x_1)(x-x_2)(x-x_3)...(x-x_n)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ux2qywfzql7jqpa18icstoto5r7tela9m4.png)
Where a is an arbitrary constant.
We are given the following roots:
-5 multiplicity 2 (-5 twice)
-2 multiplicity 1
Thus, the polynomial is:
![P(x)=a(x-(-5))(x-(-5))(x-(-2))](https://img.qammunity.org/2021/formulas/mathematics/college/25t6dkbsezdyl8f5yzbzyer1wa9glhysqy.png)
![P(x)=a(x+5)(x+5)(x+2)](https://img.qammunity.org/2021/formulas/mathematics/college/i91kqw50bn2vp1dm1fgdvoq5zih67kokm0.png)
We are not given any clue about the value of a, so we choose a=1. Multiplying:
![P(x)=(x^2+5x+5x+25)(x+2)=(x^2+10x+25)(x+2)](https://img.qammunity.org/2021/formulas/mathematics/college/63f9s6odhgpkig248rslvhleub71tqnaz0.png)
![P(x)=x^3+2x^2+10x^2+20x+25x+50](https://img.qammunity.org/2021/formulas/mathematics/college/90f0f4wfs51u3th9rtucxnjrmvyyzjdvk0.png)
Simplifying:
![\mathbf{P(x)=x^3+12x^2+45x+50}](https://img.qammunity.org/2021/formulas/mathematics/college/khsijcfddynn92sfkz6lnaacvfsau4ch7x.png)