160k views
15 votes
Pls solve this question ​

Pls solve this question ​-example-1
User SAUMYA
by
8.1k points

1 Answer

5 votes

Answer:


{( \sqrt{ {x}^( - 3) }) }^(5) = ({( {x}^( - 3)) }^{ (1)/(2) } ) ^(5) \\ \\ = {x}^{ - 3 * (1)/(2) * 5} = {x}^{ - (15)/(2) } = \frac{1}{ {x}^{ (15)/(2) } }

Or ;


{( \sqrt{ {x}^( - 3) } )}^(5) = {( \sqrt{ \frac{1}{ {x}^(3) }} })^(5) = ( { \frac{ √(1) }{ \sqrt{ {x}^(3) } } })^(5) \\ \\ = ( { \frac{1}{ √(x) \sqrt{ {x}^(2) } } })^(5) = ({ (1)/( x√(x) )})^(5) \\ \\ = ( \frac{ {(1)}^(5) }{ {x}^(5) ( √(x) )^(5) } ) = \frac{1}{ {x}^(5) * {x}^{ (1)/(2) * 5 } } \\ \\ = \frac{1}{ {x}^(5) * {x}^{ (5)/(2) } } = \frac{1}{ {x}^(5) \sqrt{ {x}^(5) } } \\ \\ = \frac{1}{ {x}^(5) \sqrt{ {x}^(4) {x}^(1) } } = \frac{1}{ {x}^(5) √(x) \sqrt{( { {x}^(2) })^(2) } } \\ \\ = \frac{1}{ {x}^(5) {x}^(2) √(x) } = \frac{1}{ {x}^(7) √(x) } = \frac{ √(x) }{ {x}^(8) }

User Djent
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories