Answer:
![z^(4) = \cos (8\pi)/(3)+i\,\sin (8\pi)/(3)](https://img.qammunity.org/2021/formulas/mathematics/college/qtvztiz8lpu1pw704xzmfxkwvb6x38vnct.png)
Explanation:
We can determine the power of a complex number by the De Moivre's Theorem, which states that for all
, where
, the power of the complex number is:
(1)
Where:
- Magnitude of the complex number, dimensionless.
- Direction of the complex number.
If we know that
,
and
, then the fourth power of the complex number is:
![z^(4) = 1^(4)\cdot \left[\cos\left((8\pi)/(3) \right)+i\,\sin\left((8\pi)/(3)\right)\right]](https://img.qammunity.org/2021/formulas/mathematics/college/d18v5n8qt1rqh28xgaisz88c1f4wnratid.png)
![z^(4) = \cos (8\pi)/(3)+i\,\sin (8\pi)/(3)](https://img.qammunity.org/2021/formulas/mathematics/college/qtvztiz8lpu1pw704xzmfxkwvb6x38vnct.png)