Answer:
The expression to represent the length
Explanation:
Given
We know that The formula for the area of the rectangle is:
Thus, the length of a rectangle
Length = Area รท Width
![=(x-(16)/(x))/((x)/(4)+1)](https://img.qammunity.org/2021/formulas/mathematics/high-school/jej2hlhog89fpe0i3tbattl3czkoznsbjm.png)
![=(x-(16)/(x))/((x+4)/(4))](https://img.qammunity.org/2021/formulas/mathematics/high-school/fudugbxegaa21a1nhu3k6c97qys6yij7ls.png)
![=((x^2-16)/(x))/((x+4)/(4))](https://img.qammunity.org/2021/formulas/mathematics/high-school/j2yqs0an4xw4zgfdo2gr809m59jcn2mjed.png)
![\mathrm{Divide\:fractions}:\quad ((a)/(b))/((c)/(d))=(a\cdot \:d)/(b\cdot \:c)](https://img.qammunity.org/2021/formulas/mathematics/high-school/tntua87hytv80blzxdqzq6haabd97uzh7t.png)
![=(\left(x^2-16\right)\cdot \:4)/(x\left(x+4\right))](https://img.qammunity.org/2021/formulas/mathematics/high-school/ktjhokwt3dmsap2ukuz8eq93lvdn9acvmw.png)
![=(\left(x+4\right)\left(x-4\right)\cdot \:4)/(x\left(x+4\right))](https://img.qammunity.org/2021/formulas/mathematics/high-school/geshsb9yqc5l72vl13bufiz8zhh9c106wn.png)
Cancel the common factor: (x+4)
![=(4\left(x-4\right))/(x)](https://img.qammunity.org/2021/formulas/mathematics/high-school/9eeuavxgtkfepgvdmw7jfh77mn1qajcbeb.png)
Thus, the expression to represent the length