Answer:
The larger gear will rotate through 156°
Explanation:
Arc Length
The arc length S of an angle θ on a circle of radius r is:
![S = \theta r](https://img.qammunity.org/2021/formulas/mathematics/college/qveygp7u2413vdb95nzbsfs9tumynohujh.png)
Where θ is expressed in radians.
The smaller gear of r1=3.7 cm drives a larger gear of r2=7.1 cm. The smaller gear rotates through an angle of θ1=300°.
Convert the angle to radians:
![\displaystyle \theta_1=300*(\pi)/(180)=(5\pi)/(3)](https://img.qammunity.org/2021/formulas/mathematics/college/ighle3pu96uks5md220k0m27s79ao90nty.png)
The arc length of the smaller gear is:
![\displaystyle S_1=(5\pi)/(3)\cdot 3.7](https://img.qammunity.org/2021/formulas/mathematics/college/y4lkpex7h3cg5ec3agdhfsxosbqwzh8t1o.png)
![\displaystyle S_1=(18.5\pi)/(3)](https://img.qammunity.org/2021/formulas/mathematics/college/bpflo16qk99r3zhqtwo5mbxm5bd0lf5pur.png)
The larger gear rotates the same arc length, so:
![\displaystyle S_2=(18.5\pi)/(3)](https://img.qammunity.org/2021/formulas/mathematics/college/fymz7wdw9jckrzyrm0zi5hoaqjva7h7sdr.png)
![\displaystyle \theta_2\cdot r_2=(18.5\pi)/(3)](https://img.qammunity.org/2021/formulas/mathematics/college/2xytr6nw43eubmtls7o739lmyjxapgb3g6.png)
Solving for θ2:
![\displaystyle \theta_2=(18.5\pi)/(3r_2)](https://img.qammunity.org/2021/formulas/mathematics/college/5keg17gerud8yw9obnsw42mor4acaq2jc5.png)
![\displaystyle \theta_2=(18.5\pi)/(3*7.1)](https://img.qammunity.org/2021/formulas/mathematics/college/ccjnkt9k0x5t4m6ciddmxtfzgaa37tbexz.png)
![\theta_2=2.73\ radians](https://img.qammunity.org/2021/formulas/mathematics/college/38szl55mdsr1evec7bm4d0b4d5oyf6g9vy.png)
![\displaystyle \theta_2=2.73*(180)/(\pi)=156](https://img.qammunity.org/2021/formulas/mathematics/college/tn3xm32yu8gbs56q93mkg9ttscpqnfmmhv.png)
The larger gear will rotate through 156°