156k views
4 votes
Find the volume of the region between the cylinder z=3y^2 and the xy-plane that is bounded by the planes x=0,x=1 ,y=-1 and . z = y2 x = 0 x = 1 y = − 1 y =1

1 Answer

5 votes

Answer:

The volume of the region V = 2

Explanation:

Given that:


z_1 = 3y^2 ;

where initially;


z_o = 0; \ x_o = 0; \ x_1 = 1; \ y_o= -1; \ y_1 = 1

The volume of the region is given by a triple which is expressed as:


V = \int_x \int_y \int_z \ dz \ dy \ dx


V = \int \limits ^(x_1 = 1)_(x_o=0) \int \limits ^(y_1 = 1)_(y_o=-1) \int \limits ^(z_1 = 3y^2)_(z_o=0) \ dz \ dy \ dx


V = \int \limits ^(1)_(0) \int \limits ^( 1)_(-1) \int \limits ^(3y^2)_(0) \ dz \ dy \ dx


V = \int \limits ^(1)_(0) \int \limits ^( 1)_(-1) \Bigg [z \Bigg]^(3y^2)_(0) \ dy \ dx


V = \int \limits ^(1)_(0) \int \limits ^( 1)_(-1) \Bigg [3y^2 \Bigg] \ dy \ dx


V = \int \limits ^(1)_(0) \Bigg [(3y^3)/(3) \Bigg]^1_(-1) \ dx


V = \int \limits ^(1)_(0) \Bigg [(3(1)^3)/(3)- (3(-1)^3)/(3) \Bigg] \ dx


V = \int \limits ^(1)_(0) \Bigg [1-(-1)\Bigg] \ dx


V =2 \Bigg [x \Bigg] ^1_0

V = 2

Thus, the volume of the region is 2

User Yousef Zakher
by
4.7k points