Answer:
The equation of the line is:
Explanation:
Given the points
Finding the slope between the points
![\mathrm{Slope}=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/nrlo6m8wdo12tyt9h1mdgp9vd4866t2plg.png)
![\left(x_1,\:y_1\right)=\left(-5,\:8\right),\:\left(x_2,\:y_2\right)=\left(-1,\:9\right)](https://img.qammunity.org/2021/formulas/mathematics/college/smmro8lm2l6gcogtpd3j1gg6zxwxxq1hun.png)
![m=(9-8)/(-1-\left(-5\right))](https://img.qammunity.org/2021/formulas/mathematics/college/aczpu0tu82mafdq61er24ygktdyjcyqlkp.png)
![m=(1)/(4)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xisxdpp8e9nws3zurjk2a0eos317s48mga.png)
Using the point-slope form of the line equation
![y-y_1=m\left(x-x_1\right)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/rcvszur2s3ju02p6yrv6wlbv0ka5o3fy58.png)
substituting the values m = 1/4 and the point (-5, 8)
![y-8=(1)/(4)\left(x-\left(-5\right)\right)](https://img.qammunity.org/2021/formulas/mathematics/college/923qxkblyey5vmuuhjxt62gml3c7vxmup0.png)
![y-8=(1)/(4)\left(x+5\right)](https://img.qammunity.org/2021/formulas/mathematics/college/562h0ldms1sxsr7ttl8smolssnmk7eufwt.png)
Add 8 to both sides
![y-8+8=(1)/(4)\left(x+5\right)+8](https://img.qammunity.org/2021/formulas/mathematics/college/nlkzuc0hldrkcwhjm2fyuv5o008hy3dsog.png)
![y=(1)/(4)x+(37)/(4)](https://img.qammunity.org/2021/formulas/mathematics/college/irut4kc674i0yc8t0qfavu13km29tveptp.png)
Thus, the equation of the line is: